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Abstract 

Background  In the course of animal developmental processes, various tissues are differentiated through complex 
interactions within the gene regulatory network. As a general concept, differentiation has been considered to be 
the endpoint of specification processes. Previous works followed this view and provided a genetic control scheme of 
differentiation in sea urchin embryos: early specification genes generate distinct regulatory territories in an embryo 
to express a small set of differentiation driver genes; these genes eventually stimulate the expression of tissue-specific 
effector genes, which provide biological identity to differentiated cells, in each region. However, some tissue-specific 
effector genes begin to be expressed in parallel with the expression onset of early specification genes, raising ques-
tions about the simplistic regulatory scheme of tissue-specific effector gene expression and the current concept of 
differentiation itself.

Results  Here, we examined the dynamics of effector gene expression patterns during sea urchin embryogenesis. Our 
transcriptome-based analysis indicated that many tissue-specific effector genes begin to be expressed and accumu-
lated along with the advancing specification GRN in the distinct cell lineages of embryos. Moreover, we found that 
the expression of some of the tissue-specific effector genes commences before cell lineage segregation occurs.

Conclusions  Based on this finding, we propose that the expression onset of tissue-specific effector genes is con-
trolled more dynamically than suggested in the previously proposed simplistic regulation scheme. Thus, we suggest 
that differentiation should be conceptualized as a seamless process of accumulation of effector expression along with 
the advancing specification GRN. This pattern of effector gene expression may have interesting implications for the 
evolution of novel cell types.
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Background
The multicellular bodies of animals develop from a ferti-
lized egg through numerous cell divisions [1]. Each cell 
determines its cell fate and specializes during the course 
of the developmental process, ultimately producing vari-
ous differentiated tissues composing an animal body [1, 
2]. In a textbook example, specification is regarded as part 
of the commitment of a cell to a certain fate [1]. Specified 
cells have the potential to differentiate autonomously in 
a neutral environment such as a petri dish. Differentia-
tion is defined as the development of specialized cells [1]. 
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This specification, and subsequent differentiation which 
is generally considered to occur as an endpoint following 
a period of specification, have been a critical focus in the 
attempt to understand the genetic principles that control 
animal development and its evolution [1, 2].

Sea urchins are one of the best model species to inves-
tigate the regulation of differentiation as the genetic con-
trol of their cell lineages has been well investigated at 
single cell resolution [2, 3]. Research using sea urchins 
imply that capturing differentiation as an endpoint of 
specification may be oversimplified. For example, the pig-
ment cells are often referred to as differentiating when 
they begin to express the genes for pigmentation [4, 
5]. However, it is many hours later before there is evi-
dence that they function in immunosurveillance [4–6]. 
Moreover, they also change their cell state and increase 
their motility in response to infection or wounding [6, 
7]. Referring to the above examples, differentiation pro-
cesses rather seem to overlap with specification and pro-
ceed without clear start and endpoint.

Nevertheless, the current genetic regulatory scheme 
of specification and differentiation has been described 
according to the simplistic view of differentiation 

endpoint model [2, 8–10]. During the developmental 
process, GRN circuits of specification, which consist of 
complex interactions of regulatory genes such as tran-
scription factors and signaling molecules, generate and 
establish distinct regulatory states in different spatial 
regions of an embryo [2, 11, 12]. This eventually leads 
to cell fate segregation in each specific cellular region 
(Fig. 1). In parallel with this process, a small set of regula-
tory genes, termed differentiation driver genes, begin to 
be expressed in each region [2, 11, 12]. These gene sets 
ultimately activate the expression of tissue-specific effec-
tor genes, which are the cohorts of genes that give rise 
to the biological identities of differentiated cell types [2, 
11, 12]. In this model, they provided the mechanistic 
definition of specification and differentiation: the process 
to establish a cellular population with a uniform regula-
tory state through the interaction of regulatory genes, the 
installation of the expression of tissue-specific effector 
genes to perform cellular biological functions, respec-
tively [2].

Previous works, however, reported that some tis-
sue-specific effector genes are regulated directly 
by upstream transcription factors to promote early 
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Fig. 1  Cell fate segregation during development of the sea urchin H. pulcherrimus. The timing of cell fate segregation and embryonic stages were 
defined based on previous work using the sea urchin S. purpuratus [14, 25, 27, 29, 30, 36]. Embryonic stages at each developmental time (0, 6, 8, 10, 
... 30 hpf ) in H. pulcherrimus were defined with reference to the previous descriptions and our observations [22]. Based on the above information, 
cell fate segregation along developmental time in H. pulcherrimus was estimated. Egg cleavage generates three cell lineages of mesomeres, 
macromeres and micromeres, segregating to the apical/nonapical ectoderm, Veg1/2 and skeletogenic/germline lineages, respectively. Each lineage 
segregates further to establish and differentiate various tissues, such as the apical organ, cilia, mid/hindgut, pigment and skeletogenic cells. Cell 
lineages (top) and cellular regions in an embryo (bottom). Apical ectoderm, Veg1 endoderm, Veg2 endoderm, NSM and skeletogenic cells are 
highlighted in blue, gray, green, yellow and orange, respectively. EB early blastula, HB hatched blastula, MB mesenchyme blastula, EG early gastrula 
and LG late gastrula
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specification in sea urchin [2, 9, 13, 14]. For exam-
ple, Mtmmpb (Matrix metalloproteinase) and Cyp1 
(Cyclophilin1), which function in the skeletogenesis, 
are directly regulated by specific transcription factors 
such as Alx1 and Ets in skeletogenic progenitor cells, 
respectively [15, 16]. Thus, the Cyp1 gene began to be 
expressed in the vegetal epithelium of embryos in par-
allel with the skeletogenic cell specification process 
[15]. Expression onset during the specification process 
was also observed in other tissues, such as endoderm 
cells, in which a marker gene for endoderm Endo16 
starts to be expressed at the blastula stage before gas-
trulation [17]. Surprisingly, some tissue-specific effec-
tor genes are reported to be expressed even before cell 
fate segregation. Pks (Polyketide synthase) and Fmo 
(Flavin-containing monooxygenase) genes are effec-
tor genes of pigment cells of nonskeletogenic meso-
derm (NSM) and begin to be expressed at the blastula 
stage [18], well before the cell fate segregation of NSM 
cells. In fact, some research has already indicated that 
the expression of tissue-specific effector genes is also 
driven by early specification genes [2, 9]. The above 
examples do not fit well with the view of the differen-
tiation endpoint model. In other words, the nature of 
differentiation regulation should be reexamined from 
the viewpoint of expression dynamics of tissue-specific 
effector genes.

Several pioneering studies have examined the expres-
sion dynamics of tissue-specific effector genes in 
the early development of sea urchin. Rafiq et  al. 2014 
compared the transcriptomes of normal embryos and 
embryos that lacked precursors for skeletogenic cells 
and comprehensively identified the tissue-specific 
effector genes in the skeletogenic cell lineage [19]. They 
found that many effector genes showed high expres-
sion levels during the late blastula to gastrula stages, 
when biomineralization is observed [19]. Barsi et  al. 
2015 obtained cell type-specific transcriptomes of six 
different lineages from pregastrula and early gastrula 
sea urchin embryos by using a combination of bacte-
rial artificial chromosome (BAC) recombineering and 
fluorescence-activated cell sorting (FACS) techniques 
[20]. They comprehensively identified the effector genes 
for each cell lineage, such as skeletogenic cells, pigment 

cells, and apical ectodermal subdomain cells, among 
others [20]. However, systematic analyses of the tem-
poral profiles of the expression of these effector genes 
remain to be performed.

In this study, we examined the details of the tissue-spe-
cific effector genes, specifically focusing on the expres-
sion onset of tissue-specific effector genes, in the sea 
urchin Hemicentrotus pulcherrimus. This species and the 
model sea urchin species Strongylocentrotus purpuratus 
diverged an estimated 9.74–14.0 million years ago [21]. 
Previous studies have reported the same key regulator 
functions and their interactions between the develop-
mental GRNs of H. pulcherrimus and S. purpuratus [22, 
23]. Based on this, we used public single-cell transcrip-
tomic data from S. purpuratus to identify tissue-specific 
effector genes [3]. Then, we examined the expression 
onset of these tissue-specific effector genes through 
temporal transcriptomic analysis of H. pulcherrimus 
embryos (egg to early gastrula stage; 0 and 6–30 hpf at 
2-h intervals). Our analysis showed the temporal overlap-
ping expression of the tissue-specific effector genes and 
specification GRN components. Rather, we found that 
the expression of some of the effector genes commences 
before cell lineage segregation occurs. We propose that 
differentiation should be defined as an accumulation pro-
cess of effector expression overlapping with specification 
which results in the establishment of the cellular regula-
tory state. Finally, our finding of dynamic expression of 
tissue effector genes provides interesting insight into the 
evolution of new cell types.

Results
Identification of tissue‑specific effector gene cohorts in H. 
pulcherrimus
Extraction of non‑transcription factor and non‑signaling 
molecule genes based on domain structures
We first attempted to systematically identify the candi-
date gene cohort of tissue-specific effector genes in the 
sea urchin H. pulcherrimus (experimental workflow: 
Fig. 2). Of 24,860 gene models that were previously iden-
tified in the genome of H. pulcherrimus [24], we identi-
fied 752 genes encoding transcription factors and cellular 
signaling proteins based on the gene domain structures. 
We tentatively considered the remaining 24,108 genes as 

Fig. 2  Experimental flow for screening tissue-specific effector genes. Screening of tissue-specific effector genes was conducted from the gene 
models of H. pulcherrimus genome in multiple steps. (1) Transcription factors and signaling molecules were removed based on the domain 
structure. (2) The genes that did not show reciprocal BLAST best hits between H. pulcherrimus (Hp) and S. purpuratus (Sp) were excluded. (3) Genes 
whose expression was biased to specific cell lineage(s) in single-cell RNA-seq data from S. purpuratus were selected. The average of expression levels 
(Ave. exp.) was calculated in each cell cluster (0–14) and gene. We counted the number of cell lineages in which the expression level was higher 
than 0.3 for each gene (#: the number of cell lineages). Three examples were shown in 0, 1 and 7 lineage(s). (4) Zygotic expression onset of the 
genes was determined using temporal transcriptomic data from H. pulcherrimus. (5) Gene annotations were checked manually to refine the sets of 
tissue-specific effector genes. See the text for detailed methods and results

(See figure on next page.)
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the first candidate cohort of tissue-specific effector genes 
(Fig. 2).

This candidate list included ubiquitous housekeep-
ing genes with roles in basic life requirements and genes 
that are not expressed in early developmental processes. 
Therefore, we next extracted the tissue-specific effector 
genes based on spatial expression pattern analysis.

Extraction of tissue‑specific effector genes based on spatial 
expression at the early gastrula stage
Tissue-specific effector genes were expected to be 
expressed in specific territories of the embryo. In particu-
lar, because major specification and cell fate segregation 
are established at the early gastrula stage of sea urchin 
(Fig.  1), our target genes were assumed to be expressed 
in specific cell lineage(s) at this stage. Under this assump-
tion, we examined the spatial expression patterns of the 
candidate genes at the early gastrula stage in a published 
dataset of single-cell RNA-seq of another sea urchin spe-
cies, Strongylocentrotus purpuratus [3].

Dataset preparation  We first prepared and reanalyzed 
the single-cell RNA-seq dataset of early development of 
S. purpuratus published by Foster et al. 2020. While these 
authors integrated the data from various early develop-
mental phases, we reanalyzed the data from early gastrula 
embryos only in order to clarify the cell states at this stage 
(Fig. 1). As shown in Additional file 1: Fig. S1, 15 cell clus-
ters were reconstructed (Additional file 1: Fig. S1; apical 
ectoderm; Cluster 11, nonapical ectoderm; Clusters 1–3, 
8 and 9, Veg1 ectoderm; Clusters 0, 5, and 6, Veg1/2 endo-
derm; Clusters 4, 7, nonskeletogenic mesoderm (NSM); 
Clusters 10, 14, skeletogenic cells; Cluster 12, germline; 
Cluster 13). Note that we could not technically distin-
guish the Veg1 and Veg2 endoderm lineage clusters from 
one another; thus, we identified these lineages as Veg1/2 
endoderm here. See the Methods for details about the 
identification of cell clusters.

Removal of  ubiquitously expressed genes to  identify tis-
sue‑specific effector genes  For subsequent investigations 
using the dataset of different species, we first restricted 
our analysis to the 13,446 genes that showed reciprocal 
BLAST best hits between H. pulcherrimus and S. purpu-
ratus (Fig. 2). We then investigated whether these genes 
had detectable expression in single-cell RNA-seq of S. 
purpuratus and found that among 13,446 genes, 11,130 
had detectable expression. Finally, the average expression 
levels of 11,130 genes in each cluster were determined 
(Fig. 2).

To specify how many cell lineages at the early gastrula 
stage expressed each gene, the gene expression in a cell 
cluster was determined according to a threshold of the 

average expression level (Fig.  2). The median and third 
quantile of the average expression level of 11,130 genes 
in each cluster were approximately 0.0529–0.0892 and 
0.232–0.356, respectively (Additional file  1: Fig. S2). 
Referring to these values, we set the threshold of 0.3 
average expression level as the cutoff for gene expression 
[the validity of this threshold was tested in subsequent 
expression analysis (Additional file  1: Fig. S3) and gene 
annotation]. When multiple cell clusters were identified 
as belonging to the same cell lineage (ex. Clusters 0, 1, 5 
and 6: Veg1 ectoderm; Clusters 2, 3, 8 and 9: nonapical 
ectoderm; Clusters 4 and 7: Veg1/2 endoderm; Clusters 
10 and 14 for NSM lineage), the cluster that showed the 
highest average expression level was considered repre-
sentative of that lineage (Additional file 1: Fig. S1).

We applied the above criteria to 11130 genes and found 
that 6258 genes did not show expression levels higher 
than 0.3 in any cell lineage (Fig. 2). In contrast, 1809 genes 
showed expression levels higher than 0.3 in all seven lin-
eages, suggesting that these genes were housekeeping 
genes. We finally identified 3063 genes whose expression 
was restricted to specific cell lineage(s) in the early gas-
trula (Fig. 2). Among them, 1058 genes showed single cell 
lineage-specific expression, and 507 showed expression 
in two cell lineages. The rest of the genes showed expres-
sion in more than three lineages (Fig.  2; 494, 329, 348 
and 327 genes in 3–6 lineages, respectively). We investi-
gated the spatial expression patterns of 1058 genes whose 
expression was determined to be restricted to a single cell 
lineage according to the single-cell transcriptomic data. 
According to this profile, 1058 genes exhibited expres-
sion that was mainly localized to a single cell lineage 
(Additional file 1: Fig. S3). Note that the typical effector 
genes for skeletogenesis, such as Msp130L and C-lectin/
PMC1, were included in this cohort. Thus, we considered 
that the threshold of expression level was an adequate 
cutoff for gene expression, and our target tissue-specific 
effector genes were extracted (Fig. 2).

A number of tissue‑specific effector genes begin their 
expression before embryonic territories are established in 
H. pulcherrimus
Determination of expression onset of tissue‑specific effector 
genes during early development of H. pulcherrimus
To determine the zygotic expression onset of the 3063 
tissue-specific effector genes that were screened above, 
we prepared whole-embryo transcriptome data from a 
total of 14 stages of H. pulcherrimus: fertilized eggs (0 
hpf ) and embryonic stages (6–30 hpf) from the early 
blastula to gastrula stage at 2-h intervals (Fig.  1). We 
obtained three biological replicates from different par-
ents and calculated the average expression level (FPKM 
value) of each gene at each timepoint.
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Expression onset was determined through the iden-
tification of the timepoint at which the FPKM value 
exceeded three for the first time. A total of 2833 of 3063 
genes showed FPKM values higher than three at one 
or more of the developmental time points examined 
(Fig. 2; 0–30 hpf). Among these 2833 genes, 1843 genes 
showed FPKM values higher than three at 0 hpf, indicat-
ing that the transcripts of these genes were of maternal 
origin (Fig. 2). Although we aimed to identify the zygotic 
expression onset of these 1843 genes, we could not tech-
nically define their zygotic expression onset. The remain-
ing 910 genes showed FPKM values higher than three for 
the first time between 6 and 30 hpf (Fig. 2). Of these 910 
genes, 516 genes showed FPKM values of less than one 
at 0 hpf (Fig. 2). These genes were clearly defined as the 
genes that were zygotically expressed. Thus, we targeted 
these 516 genes in the subsequent analysis (Fig. 2).

The annotations of the 516 genes were checked manu-
ally (Additional file 1: Table S1). As representative exam-
ples, the pigmentation marker gene Fmo (Fmo5_1) was 
listed among the genes that were estimated to be spe-
cifically expressed in NSM. The germline marker gene 
Nanos (Nan2) was also screened as a germline-specific 
effector gene. Moreover, many skeletogenic/biomin-
eralization marker genes, including Clectins (C-lectin, 
C-lectin/PMC1, Clect_13, Clect_25 and Clect_76), Msps 
(Msp130L and Msp130r1), Sm29 and P16, were included 
in the list of genes that were specifically expressed in 
skeletogenic cells. Our screening also identified a num-
ber of genes that are involved in the biological process of 
differentiation, such as membrane formation and cellular 
transportation. This validated our approach for screen-
ing tissue-specific effector genes. Notably, this gene 
list included 9 putative cellular signaling-related genes 
(Delta, Dkk1, Eph, Frizz4, Frizz9/10, Hh, Vegf3, TgfbrtII 
and PlexA4_2-like, Tie1/2) and 7 putative transcrip-
tion factors (Erg, Hnf1aL-like, Zmym1-like, Zmynd11, 
Zmynd12 and Znhit1). We removed these genes from 
subsequent analysis. Thus, the zygotic expression onset 
of a total of 500 genes was determined (Fig. 2).

Expression onset pattern of tissue‑specific effector genes 
during early development of H. pulcherrimus
Of these 500 genes, 246 were expressed in a single cell 
lineage at the early gastrula stage (Fig. 3A). The remain-
ing genes were found to be expressed in multiple cell 
lineages (Fig. 3A; 87, 63, 43, 25 and 37 genes in 2–6 cell 
lineages, respectively). We found that a large number of 
genes showed expression onset at the early stage, when 
cell lineage segregation occurs (6–10 hpf; Fig.  3B–C). 
This early expression onset was clearly observed for the 
genes that showed expression in multiple cell lineages 
(Fig.  3B–C). For tissue-specific effector genes that are 

expressed in a single cell lineage, the expression onset is 
rather broad; three main peaks of onset were detected at 
10, 16 and 24 hpf (Fig. 3B–C). Nevertheless, most impor-
tantly, our observations are not consistent with the pre-
vious model of tissue-specific effector gene expression 
activation at the endpoint of specification GRNs after cell 
lineage territories are established (Fig. 3B–C).

Furthermore, we identified the spatial expression 
regions of the genes that showed specific expression in 
a single cell lineage at the early gastrula stage (Fig. 3D). 
For example, 19 genes began to be expressed at 6 hpf and 
were expressed in a single cell lineage at the early gas-
trula stage (Fig.  3D). We found that early onset of gene 
expression at 6 hpf was observed in genes of all cell lin-
eages: apical ectoderm, 3; nonapical ectoderm, 2; Veg1 
ectoderm, 1; Veg1/2 endoderm, 1; NSM, 3; skeletogenic 
cells, 3; and germline, 6 (Fig. 3D). Surprisingly, we iden-
tified several effector genes with expression onset before 
cell lineage segregation occurs. While cell lineage segre-
gation into the Veg2 endo-mesoderm at approximately 
16 hpf in the mesenchyme blastula stage (Fig.  1), some 
of the specific effector genes for the Veg1/2 endoderm 
were expressed beginning at 6 hpf (Fig. 3D). Some NSM 
effectors also show expression from 6 hpf (Fig. 3D). Thus, 
the effector genes of endoderm and NSM are also coex-
pressed in the precursor cells (Veg2 blastomeres). Such 
coexpression was also observed in Veg1 ecto-endoderm 
lineage. Cell lineage segregation into Veg1 ecto-endo-
derm occurred at approximately 14 hpf in the hatched 
blastula stage (Fig.  1), while some of the specific effec-
tor genes for the Veg1 ectoderm and Veg1/2 endoderm 
were expressed beginning at 6 hpf (Fig.  3D). Specifi-
cally, we detected the coexpression of the endodermal 
(LOC582093: Cadherin_6 and LOC575113: Rergl4/Ras-
like estrogen-regulated, growth inhibitor like 4) and 
mesodermal (LOC589279: Got1/Glutamic-oxaloacetic 
transaminase 1) effectors in Veg2 endo-mesodermal cells 
at the early blastula stage (Fig.  4). In both cases, some 
Veg2 cells expressed both endoderm and mesodermal 
effector genes whose expression was ultimately restricted 
to a single lineage. Coexpression of the endoderm effec-
tor LOC575113 (Rergl4) and ectoderm endoderm effec-
tor LOC576910 (Hypp_5866) was also detected in their 
precursor Veg1 cells (Fig. 4).

Early expression onset of tissue‑specific effector genes 
was validated in the analysis of representative cell lineages
Above, we extracted the expression onset pattern of 
the tissue-specific effector genes from the compre-
hensive list of sea urchin genes. We next took a com-
plementary approach to extract tissue-specific effector 
genes for the representative cell lineages. We examined 
the marker effector genes for the NSM, skeletogenic, 
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Veg1/2 endoderm and apical ectoderm cell lineages 
because the regulatory pathways in these cell types 
have been described in detail (Fig.  1) [2, 14, 25–28]. 
Then, we directly compared expression onset among 
early specification GRN, differentiation driver genes 
and tissue-specific effector genes in each lineage.

Extraction of marker effector genes and regulatory genes 
for each cell lineage
In this analysis, we extracted the tissue-specific effec-
tor gene cohort for each cell lineage using a statistical 
approach. We used Seurat to find marker genes of single 
or multiple cell cluster (s) using single-cell transcriptomic 
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shows the number of genes expressed in each number of cell lineages separately. D Shows the number of tissue-specific effector genes whose 
expression was restricted to a single cell lineage at each zygotic expression onset time and each cell lineage (as shown in the bottom graphs in C). 
The number and cell lineages are reflected in the size and color of the circles, respectively. Bars 1–4 in D indicate the cell fate segregation timing 
with reference to Fig. 1. Bar 1: micromere to skeletogenic cells and germline; Bar 2: mesomere to apical ectoderm and macromere to Veg1/Veg2; Bar 
3: nonapical ectoderm to ciliary ectoderm/nerve cells and Veg2 to Veg2 endoderm/NSM; Bar 4: Veg1 to Veg1 ectoderm/Veg1 endoderm

Fig. 4  Coexpression of tissue-specific effector genes of the Veg2 endo/mesoderm and Veg1 ecto/endoderm in their precursor cells. A–C Show 
the expression patterns of LOC582093/Cadherin_6 and LOC589279/Got1; LOC575113/Rergl4 and LOC589279/Got1; and LOC575113/Rergl4 and 
LOC576910/Hypp_5866 in the UMAP projection derived from S. purpuratus single-cell RNA-seq data with the Seurat option FeaturePlot and its blend 
function. a and b Show the expression of the former and latter genes at the early blastula stage, respectively. c Merges the expression patterns of 
a and c. d is a magnified view of Veg2 (A and B) or Veg1 (C) cell clusters. e and f Show the expression of the former and latter genes at the early 
gastrula stage, respectively. h Is the color index showing the strength of the expression level and coexpression in c and g 

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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data from S. purpuratus (see the Methods for details). 
After checking the resulting gene expression patterns 
manually, we ultimately elucidated 53, 66, 18 and 21 tis-
sue-specific effector genes for NSM, skeletogenic cells, 
Veg1/2 endoderm and apical ectoderm, respectively 
(Additional file  1: Table  S2). We confirmed that known 
marker genes were included in our screening list (for 
example, Msp130 and Sm50 for skeletogenic cells and 
Pks and Fmo for NSM). Finally, the expression onsets 
were determined using the criteria mentioned above in 
44, 60, 16 and 20 genes, respectively. We also extracted 
the transcription factors or signaling genes that compose 
the specification GRN and differentiation drivers in the 
above four lineages from the literature.

Expression onset of differentiation marker effector genes 
in four cell lineages
NSM  NSM cells are segregated from the Veg2 cell line-
age at the hatched blastula stage (12–16 hpf; Fig. 1) and 
invaginate into the blastocoel from the tip of the arch-
enteron at the late gastrula stage (Fig. 1) [26, 29, 30]. Such 
mesenchymal cells are called secondary mesenchymal 
cells (SMCs) and differentiate into various mesodermal 
cells, including pigment cells and coelomocytes [29, 30]. 
We found that early specification genes for the Veg2 line-
age, such as Eve and Foxa [26, 28], begin to be expressed 
at approximately 6–12 hpf (Fig.  5B). A previous study 
reported that GataE (GataL), Six1/2 and GataC drive the 
expression of differentiation effector genes [31, 32]. These 
differentiation driver genes were initially expressed at 12, 
10 and 16 hpf (Fig. 5B). This expression onset pattern is 
consistent with the cell fate segregation of the Veg2 endo-
mesoderm occurring at approximately 12–16 hpf.

Among the 44 tissue-specific genes that were screened 
for NSM, 22 marker effector genes were zygotically 
expressed only during 10–28 hpf. Among these, several 
effector genes began to be expressed in parallel with the 
expression of some specification genes; 11 genes were 
zygotically expressed at 10–14 hpf, corresponding to 
early and hatched blastula stages (Fig. 5A). In particular, 
effector genes such as Spsb3, Hypp-0119 and Ars-3 began 
to be expressed even before cell fate segregation at 10 
or 12 hpf (Fig.  5A). The onset of the remaining zygotic 
genes occurred after cell fate segregation, and several 
genes considered to function in pigmentation were in 
this cohort: Fmo3, 16 hpf; Psk1, 16 hpf and Fmo5_1, 18 
hpf (Fig. 5A). The remaining 22 effector genes were those 
whose transcripts were distributed in the egg (Fig.  5A). 
Although the zygotic expression onset of these genes 
was unclear in most cases, we could estimate the zygotic 
expression onset of several maternal genes based on the 
temporal expression pattern (Additional file  1: Fig. S4). 
Among these genes, Abcc5D was inferred to undergo 

zygotic expression onset at 10 hpf before cell fate seg-
regation, as the expression level of Abcc5D decreased 
from 0 hpf (FPKM: 3.23) to 8 hpf (FPKM: 1.86) and then 
increased after 10 hpf (FPKM: 4.93; Additional file 1: Fig. 
S4). Therefore, our data confirmed that some tissue-spe-
cific effector genes for NSM begin to be expressed prior 
to the segregation of the Veg2/NSM lineage.

We further investigated the spatial expression pat-
terns of representative effector genes (Srcr42 and Spsb3) 
to validate that transcriptome-based analysis accurately 
captured the marker genes of the NSM lineage and their 
expression onsets. Srcr42 transcripts were localized in 
eggs, and Spsb3 was zygotically expressed in the Veg2 
cell lineage before the segregation of the endo-meso-
derm (Figs.  5A, B, 7A–D). Our subsequent investiga-
tion showed Srcr42 as broadly expressed in whole eggs 
(Fig. 7A, B: 0 hpf ) and early blastula embryos (Fig. 7A, B: 
6 hpf ) but specifically expressed in the NSM region after 
the mesenchyme blastula stage (Fig.  7A, B: 16, 24 hpf). 
Spsb3 was specifically expressed in a Veg2 tier at the veg-
etal pole of the early blastula at 10 hpf, before the Veg2 
endo-mesoderm was clearly segregated (Figs.  1, 7C, D). 
Spsb3 was then expressed in the Veg2 cell lineage at 12, 
18 and 24 hpf (Fig.  7). These expression patterns were 
clearly consistent with the results of our transcriptome-
based determinations of expression onset.

Skeletogenic cells  The precursors of skeletogenic cells, 
PMCs, are specified from micromere lineages by mater-
nal factors, such as beta-catenin polarization at the veg-
etal pole of embryos during the cleavage stage (Fig.  1) 
[10, 14, 29]. Then, PMCs ingress into the blastocoel at the 
mesenchyme blastula stage and finally differentiate into 
skeletogenic cells through cellular aggregation and miner-
alization at the early gastrula stage [10, 14, 29].

As the fate of skeletogenic cells is committed at the 
cleavage stage, we found that early specification genes 
such as Wnt8, Pmar1a, Nrl and Delta [10, 14] began to 
be expressed at 6–8 hpf, the earliest timepoint in our 
dataset (Fig. 5D). Genes such as DriI, Erg, and FoxB were 
reported to function as differentiation driver genes to 
activate tissue-specific effector genes in skeletogenic 
cell lineages [15]. The expression onset of these genes 
was observed at 12–20 hpf (Fig.  5D). During this time-
frame, we detected that some effector genes, such as 
Spsb3, Sm50 and Enpep_2, began to be expressed at 10 
hpf, corresponding to the early blastula stage (Fig.  5C). 
The expression onset of effector genes such as Pks2, 
Timp3b and Prss12L_2 occurred at 12–16 hpf, the time at 
which differentiation driver genes began to be expressed 
(Fig.  5C). Other genes, such as Otop2L and Hypp-5094, 
began to be expressed after establishment of the regu-
latory state, at 22–28 hpf (Fig.  5C). We also found that 
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transcripts of some effector genes were maternally local-
ized in eggs, as observed for NSM (Fig.  5C; 18 of 61 
genes), and the zygotic expression onset could be esti-
mated for only two of these genes (Additional file 1: Fig. 
S4; Sdccag3L: 24 hpf, Anpep_1: 16 hpf). In summary, 
early expression and accumulation of effector genes were 
also observed in skeletogenic specification process.

We also clarified the expression onset of effector 
genes that were previously identified to function in 
the biomineralization process (i.e., Msp130, Plod2, 
Sm50 and 3Apcol) [33, 34]. Some biomineralization 
genes began to be expressed at approximately 12–16 

hpf (Fig.  6), and there was no tendency for biominer-
alization genes to begin to be expressed only after later 
stages, such as the mesenchyme blastula or early gas-
trula stage. We also found that genes such as Ttrspn, 
Plod2, Msp130r2, Fam20c, A2(IV) and 3Apcol were 
maternally distributed in eggs (Fig.  6). These findings 
indicated that even effector genes with specific func-
tions in biomineralization began to be expressed prior 
to regulatory state establishment.

We investigated the spatial expression patterns of two 
representative genes for skeletogenic cells: Plod2 and 
Enpep_2. Consistent with the FPKM values, ubiquitous 
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expression of Plod2 was detected in eggs and early blas-
tula embryos (Fig. 7E, F: 0 and 6 hpf, respectively). Spe-
cific expression in skeletogenic cells was also observed 
in the mesenchyme blastula and early gastrula (Fig. 7F: 
16 and 24 hpf, respectively), suggesting that mater-
nal transcripts persisted until the early developmental 
phase and that zygotic expression specifically occurred 
in skeletogenic cells. We also detected the specific 
expression of Empep2 in skeletogenic cells from the 
early blastula to early gastrula stage (Fig.  7G, H) and 
confirmed that the calculated expression level reflected 
the endogenous expression profile.

Veg1/2 endoderm cells  Figure 5E shows the expression 
onset of Veg1/2 endoderm effector genes. As mentioned 

above, the Veg2 cellular population segregated to NSM 
and Veg2 endoderm at the hatched blastula stage (Fig. 1) 
[26, 29, 30]. Veg1 endoderm cells develop from the Veg1 
cell lineage at the mesenchyme blastula stage (Fig.  1) 
[26, 30]. We detected that the expression of early speci-
fication genes such as Eve and Foxa and differentiation 
driver genes such as Bra was initiated at 6–8 hpf and 14 
hpf, respectively (Fig. 5F) [26, 28]. Therefore, the regula-
tory state of Veg1/2 endodermal cells was estimated to be 
established at approximately 10–14 hpf.

Our data also showed that approximately half of the 
effector genes for the Veg1/2 endoderm were those whose 
transcripts were maternally distributed in eggs (Fig. 5E, 9 
of 16 genes). Their zygotic expression onset could not be 
calculated. On the other hand, three genes (Hypp_0973, 
PppL_224, and Cadherin_6) began to be expressed at 
8–10 hpf, at which time the Veg1/2 endodermal regula-
tory state was not clearly segregated (Fig. 5E). Thus, con-
sistent with the results for NSM, both endodermal and 
mesodermal effector genes commonly initiate expression 
in their precursor Veg2 cells.

We detected the coexpression of Spsb3 (a mesoder-
mal effector gene: Fig. 7D) and Pppl_224 (an endoderm 
effector gene: Fig.  7J) in Veg2 cells at the early blastula 
stage, at which the Veg2 lineage was not clearly segre-
gated (Fig. 7J). We found that the expression of Pppl_224 
could be observed in the epithelium of the vegetal pole, 
including the Veg2 region, at the early blastula stage (12 
hpf: Fig.  7J), similar to the expression of Spsb3 at the 
same stage (10 hpf: Fig.  7D). Pppl_224 continued to be 
expressed until the early gastrula stage and finally local-
ized specifically to the endodermal region at the early 
gastrula stage (20, 24 hpf: Fig. 7J). These spatial expres-
sion patterns suggested that the expression of tissue-
specific effector genes for endoderm and mesoderm 
commence simultaneously in their precursor cells.

Apical ectodermal cells  Finally, we investigated the 
expression onset of tissue-specific effector genes of the 
apical ectoderm (Fig. 5G, H) and found expression onset 
patterns similar to those of other lineages. The cell fate of 
the apical ectoderm is clearly segregated from mesomeres 
in the early blastula stage (Fig. 1), although several regu-
lators, such as the Foxq2 gene, began to be expressed in 
the apical ectodermal region at approximately the 32-cell 
stage [27, 35, 36]. In the later stages, such as the hatched 
blastula stage, neural progenitor cells develop from the 
apical ectoderm [36].

We found that early specification genes such as Foxq2, 
Six3 and Hbn begin to be expressed at 6–10 hpf [27]. Dif-
ferentiation driver genes such as Z133 (Z133_1) and Ac/
Sc began to be expressed at 16 and 18 hpf, respectively 
[27]. Our data also indicated that the onset of expression 
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of some effector genes (Hypp_1056, Hypp_1641, RapL, 
Opn5L and Hypp_1863) occurred at 6–10 hpf, at which 
the cell fate segregation of mesomere occurs (Fig.  5G). 
Eleven genes were maternal genes whose transcripts were 
detected in eggs, and their zygotic gene expression onset 
could not be determined. We finally observed that the 
gene Hypp-1056, one of the screened effector genes, was 
expressed in the apical ectoderm in the early, hatched 
blastula and early gastrula stages (Fig.  7L: 6, 12 and 24 

hpf, respectively). Therefore, even in the apical ectoder-
mal region, our data suggested that many effector genes 
began to be expressed before the regulatory state and cell 
fate was clearly established.

Finally, we note that the expression onset of some effec-
tor and regulator genes has already been reported in sea 
urchin species such as S. purpuratus, Lytechinus variega-
tus and Paracentrotus lividus [18, 19, 27, 28, 31, 37–70]. 
We have summarized the expression onset of these genes 
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Fig. 7  Spatial expression pattern of the representative tissue-specific effector genes. Temporal (A, C, E, G, I, K) and spatial (B, D, F, H, J, L) expression 
patterns of each gene were, respectively, obtained from transcriptome data and whole-mount in situ hybridization (A, B: Srcr42; C, D: Spsb3; E, F: 
Plod2; G, H: Enpep_2; I, J: PppL_224; K, L: Hypp_1056). Developmental timepoints for in situ hybridization are indicated above each photo of B, D, F, 
H, J and L 
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in Additional file  1: Table  S3. The results validated that 
most of the genes showed similar expression onset in 
these sea urchin species compared to H. pulcherrimus. 
Thus, it is suggested that the early expression onset pat-
tern shown in this study is not specific to H. pulcherri-
mus, but is generally observed in sea urchin species.

Discussion
According to the differentiation endpoint model, the 
GRN has been proposed as a regulatory scheme underly-
ing early specification and differentiation in sea urchins 
[2, 10–12, 28]. In this scheme, transcription factors in 
early specification GRNs, together with some signaling 
molecules, generate cell lineage territories in embryos 
and subsequently activate the expression of differen-
tiation driver genes, which also include additional tran-
scription factor genes [2, 11, 12]. Finally, the transcription 
factors among the differentiation driver genes subse-
quently regulate the expression of tissue-specific effector 
genes in each territory [2, 11, 12].

However, contravening this model, the expression 
onset of some effector genes was reported to be directly 
regulated by early specification genes [2, 9, 13, 14]. This 
study suggests that the early expression of some effector 
genes is not exceptional but rather a general observation 
in various lineages of sea urchin embryos. In this study, 
we first comprehensively extracted the tissue-specific 
effector genes for seven cell lineages (Fig.  3). Although 
the timing of cell fate segregation is different among 
cell lineages, tissue-specific effector genes of any line-
age commonly begin to be expressed around the blastula 
stage (Fig. 3). Moreover, we validated the early expression 
of several tissue-specific effector genes during specifi-
cation process in representative cell lineages (Fig.  5). In 
some cell lineages, such as Veg1 and Veg2, tissue-specific 
effector genes begin to be expressed before cell fate seg-
regation (Figs.  3, 4, 5, 6, 7). For example, both tissue-
specific effector genes for NSM and Veg2 endoderm are 
expressed in their precursor Veg2 cells (Figs. 4, 7). Over-
all, tissue-specific effector genes generally begin to be 
expressed in parallel with specification GRN and even 
before cell fate segregation during the early development 
of sea urchins. This finding is not consistent with the dif-
ferentiation endpoint model. We rather support that dif-
ferentiation overlaps with specification processes and 
proceeds without clear start and endpoint as mentioned 
in the examples of pigment cells. In other words, the dif-
ferentiation and its regulatory scheme should be concep-
tualized as a seamless process of accumulation of effector 
expression along with the advancing specification GRN.

Here, we discuss some biological impacts of this early 
onset of effector gene expression. The first question may 
be whether effector gene expression in the early phase of 

differentiation can be harmful. Although we do not have 
any evidence of when the proteins encoded by effector 
genes are produced, our observations suggest that the 
early expression of tissue-specific effector genes is mod-
est or even negligible. The presence of biomineralization 
matrix proteins in cells during the early differentiation 
process can be tolerated. Alternatively, the effects of 
expression may be suppressed by an active degradation 
mechanism. Recently, it has been recognized that active 
transcript degradation mechanisms are involved in speci-
fication and differentiation [71, 72]. For example, it has 
been reported that the interposition of specific microR-
NAs controls the patterning of the larval skeleton in sea 
urchin embryos [73, 74]. Thus, the mRNAs of tissue-
specific effector genes may be selectively degraded or 
translationally controlled during the early specification 
process. We finally want to note the possibility that some 
effector genes are expressed prior to cell fate segrega-
tion to perform specific roles in the biological process 
of asymmetric fate segregation. In the future, a compre-
hensive genetic control model based on the specification 
GRN and degradation mechanism should be constructed 
by focusing on the expression onset of tissue-specific 
effector genes. In this respect, it is worth noting that 
a large number of tissue-specific effector genes were 
deposited as maternal RNAs. Generally, in early animal 
development, many transcripts and proteins are depos-
ited into oocytes [75]. These transcripts and proteins 
function to maintain basic cell functions until zygotic 
gene activation occurs [75–77]. Considering that tissue-
specific effector genes have specific functions in dif-
ferentiation, such as skeletogenesis and pigmentation, 
the maternal transcripts of effector genes are unlikely to 
function in any biological processes during early develop-
mental stages such as cleavage stages. For example, some 
maternal transcripts may be localized to a specific cell 
lineage with selective degradation from all other lineages.

Another implication of the early onset of effector 
expression may be the evolution of new cell types or 
functions. We found that some effector genes are coex-
pressed in precursor cells before cell lineage segregation 
occurs. This phase of early effector gene expression may 
provide test cases for novel repertoires of gene expres-
sion to perform novel cell functions. It is not rare for 
the developmental processes of certain cell types to be 
altered during evolution [78]. For example, echinoderm 
larval skeletogenesis is likely to have arisen from the co-
option of adult skeletogenesis for the larval stage in the 
sea urchin and brittle star lineage [79, 80]. This co-option 
allows a developmental process in which biomineraliza-
tion cells and mobile mesenchyme cells are derived from 
precursor cells. Then, the precursor cells coexpress the 
effector genes for biomineralization and those for mobile 
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mesenchyme cells. This may have contributed to the 
acquisition of the unique larval skeleton. Therefore, such 
cases of modification of developmental processes may 
provide their own combination of effector gene expres-
sion and provide occasions to explore novel cell func-
tions. In other words, the early specification process may 
not only serve to provide differentiation driver genes 
for certain lineages; in an evolutionary sense, it can also 
function as a showcase of new cell functions.

Conclusions
Differentiation processes underlying animal development 
have attracted critical interest to understand how animal 
morphology evolves. Pioneer studies on sea urchin GRN 
established a simplistic regulatory model which cap-
ture differentiation as the endpoint of specification pro-
cess. This study reexamined the differentiation endpoint 
model, and found that gene cohorts of tissue-specific 
effector genes show expression onset patterns that are 
not well-consistent with the previous regulatory scheme. 
We suggest that differentiation processes are more 
dynamic than previously proposed, and imply that the 
dynamic GRN nature drives evolution of new cell types.

Methods
Preparation of transcriptome data and calculation 
of expression level
Adult specimens of H. pulcherrimus were collected 
around Tateyama (Chiba Prefecture, Japan). Artificial 
fertilization was conducted with reference to previous 
works [81]. Embryos from three different parents were 
obtained and cultured using artificial seawater (commer-
cially purchased as Marine Art BR, Osaka Yakken Co, 
Osaka, Japan) at 14 °C. Total RNA was extracted from liv-
ing eggs (0 hpf ) and embryos (6, 8, 10, ..., 30 hpf) in each 
replicate using TRIzol reagent (Thermo Fisher Scientific, 
Massachusetts, U.S.) and then purified with the RNeasy 
kit (Qiagen, Hilden, Germany). Preparation of paired-
end libraries and sequencing (150 bp) on a NovaSeq 6000 
were performed by Novogene. The raw reads were depos-
ited in the DDBJ Sequence Read Archives (DRA015433). 
The quality of raw reads was evaluated by FastQC (ver-
sion 0.11.5; https://​www.​bioin​forma​tics.​babra​ham.​ac.​uk/​
proje​cts/​fastqc/) and further filtered by Trimmomatic 
(version 0.38) [82]. The gene models of H. pulcherrimus, 
which were previously published by Kinjo et  al., 2018, 
were used as a reference for the calculation of expression 
levels over developmental time [24]. Read mapping and 
FPKM calculation were conducted using Rsem/bowtie2 
(version 1.2.28) [83]. The FPKM values of each gene in 
three biological replicates at each developmental time-
point were averaged for the subsequent analysis. This 

dataset is available in the supplementary file (see Avail-
ability of data and materials).

General description of bioinformatic analysis and data 
visualization
We mainly used the R language (version 4.1.3) and 
its packages, such as Tidyverse (version 1.3.2), for the 
analysis of transcriptome data [84, 85]. Data process-
ing was also conducted using the Unix standard com-
mand line, for example, AWK in bash/zsh. The ggplot2 
(in Tidyverse) and gt packages were utilized to generate 
graphs (Figs. 3, 5, 6, 7 Additional file 1: S2, S4) and tables 
(Additional file  1: Tables S1, S2), respectively [85, 86]. 
Original figures were processed using Adobe Illustration 
without modifying the results. Code (R scripts), datasets, 
and original figures are provided in the supplemental 
files.

Analysis of single‑cell RNA‑seq data of S. purpuratus
Dataset preparation and cell clustering
We obtained the raw data of single-cell RNA-seq of S. 
purpuratus early blastula (EB) and early gastrula (EG) 
embryos from NCBI GEO (GSE149221; GSM4494541: 
SpEB/early blastula stage; GSM4494544: SpEG/early 
gastrula) [3]. All data were further processed using Seu-
rat (version 3.2.1) [87]. Filtering, normalization, feature 
selection, dimension reduction and cell clustering were 
performed with reference to the online manual, which 
was provided by the Seurat developer (https://​satij​alab.​
org/​seurat/​archi​ve/​v3.2/​pbmc3k_​tutor​ial.​html) [87]. 
Essentially, we used the default values to analyze these 
data in the same way as the authors who published the 
raw S. purpuratus single-cell RNA-seq data [3]. A total 
of 10 and 15 cell clusters were found in the EB and EG, 
respectively (Additional file  1: Fig. S1A, B). Each clus-
ter was annotated according to the expression patterns 
of the following marker genes with previously char-
acterized expression: Apical ectoderm [35, 88]: Foxq2 
(foxq2), Nkx2.1 (NK2.1); nonapical ectoderm [25]: Six3 
(LOC576281), Emx (LOC577702), Unvn (LOC373488), 
Lim1 (Lim1), Gsc (Gsc) and FoxG (FoxG); Veg1 ectoderm 
[25]: Eve (eve), Vegf3 (LOC100889860); Veg1 endoderm 
[25]: Eve (eve), Hox7 (Hbox7); skeletogenic cells [14]: 
Alx1 (Alx1), Sm50 (SM50); NSM [28]: Gcm (gcm), GataE 
(GATAe); Veg2 endoderm [28]: Blimp1/Krox (blimp1/
krox), FoxA (FoxA); germline [89]: Nanos (Nanos2). The 
expression of these genes was plotted on the uniform 
manifold approximation and projection (UMAP) projec-
tion of EB and EG data (Additional file 1: Fig. S1C).

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://satijalab.org/seurat/archive/v3.2/pbmc3k_tutorial.html
https://satijalab.org/seurat/archive/v3.2/pbmc3k_tutorial.html
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Spatial expression analysis for screening of tissue‑specific 
effector genes
The spatial expression of the candidate tissue-specific 
effector genes was investigated using the EG data. We 
used the dotplot option in Seurat to obtain the compre-
hensive expression data (average expression in each clus-
ter) of each gene [87]. The expression matrix was further 
processed to show the distribution of expression levels in 
each cluster (Fig. S2) and the localization of expression 
of each gene (Additional file 1: Fig. S3). Coexpression of 
Veg2 endo-mesoderm and Veg1 ecto-endoderm effector 
genes was investigated using the option FeaturePlot and 
its blend function with the default threshold (Fig. 4) [87].

Extraction of marker genes of representative clusters
To obtain the list of marker genes for apical ectoderm, 
Veg1/2 endoderm, NSM and skeletogenic cells, the Find-
Markers option in Seurat was used [87]. Using this option 
with default parameters, we first extracted the marker 
genes of cluster(s) 12, 4/7, 10 and 11. From this list, the 
top 100 genes with the highest p values were extracted. 
Then, these genes were further filtered by domain search 
for transcription factors/signaling machinery and BLAST 
reciprocal hit between S. purpuratus and H. pulcherri-
mus as described below. Finally, we manually reviewed 
and selected their spatial expression patterns (Additional 
file 1: Table S2).

Determination of zygotic expression onset 
of tissue‑specific effector and transcription factor genes 
in H. pulcherrimus
Tissue-specific effector genes were extracted from two 
experimental flows as described in the text (screening 
from comprehensive genomic dataset and extraction of 
the marker genes of representative cell lineages). Tran-
scription factors were extracted with the domain search 
described below. Expression onset was investigated as the 
earliest time at which a FPKM value threshold was met 
during the developmental time (0, 6–30 hpf). Specifi-
cally, for each target gene, we specified the time at which 
the FPKM value exceeded three for the first time as the 
time of expression onset. We could not technically dis-
tinguish maternal and zygotic transcripts in this study. 
Thus, zygotic expression onset was determined only for 
those genes whose FPKM values were less than one at 0 
hpf. In exceptional cases, we defined the zygotic expres-
sion onset of the genes that did not meet this criterion 
via manual analysis of representative cell lineages (Addi-
tional file 1: Fig. S4). Specifically, we manually defined the 
zygotic expression onsets in cases with (1) a decrease in 
FPKM values in early stages, such as 6–10 hpf, and (2) an 
increase in FPKM values just after these stages.

Other bioinformatic analyses
Domain search
Domain searches of transcription factors and signaling-
related genes were carried out using HMMER search 
(version 3.3.2) [90]. Specifically, the following hmm 
domains were prepared to extract transcription fac-
tors: ARID (PF01388.17), AT_hook (PF02178.15), Basic 
(PF01586.12), CUT (PF02376.11), DM (PF00751.14), 
Ets (PF00178.18), Forkhead (PF00250.14), GATA 
(PF00320.23), GCM (PF03615.11), HLH (PF00010.22), 
HMG_box (PF00505.15), Hairy_orange (PF07527.9), 
Homeobox (PF00046.25), Hormone_recep (PF00104.26), 
OAR (PF03826.13), P53 (PF00870.14), P53_tetramer 
(PF07710.7), PAX (PF00292.14), Pou (PF00157.13), 
HPD (PF05044.8), RHD_DNA_bind (PF00554.18), 
Runt (PF00853.15), SCAN (PF02023.13), SIM_C 
(PF06621.8), SRF-TF (PF00319.14), T-box (PF00907.18), 
TBX (PF12598.4), TF_AP-2 (PF03299.10), TF_Otx 
(PF03529.9), bZIP_1 (PF00170.17), bZIP_2 (PF07716.11), 
zf-C2H2 (PF00096.22), zf-C2HC (PF01530.14) and zf-C4 
(PF00105.14). The following hmm domains were for 
signaling-related genes: AMH_N (PF04709.8), CSF-1 
(PF05337.7), Cbl_N (PF02262.12), Cbl_N2 (PF02761.10), 
Cbl_N3 (PF02762.10), CheW (PF01584.15), DIX 
(PF00778.13), Dishevelled (PF02377.11), FGF 
(PF00167.14), Focal_AT (PF03623.9), G-gamma 
(PF00631.18), GM_CSF (PF01109.13), Hpt (PF01627.19), 
IL11 (PF07400.7), IL12 (PF03039.10), IL2 (PF00715.13), 
IL3 (PF02059.11), IL4 (PF00727.14), IL5 (PF02025.11), 
IL7 (PF01415.12), MCPsignal (PF00015.17), NPH3 
(PF03000.10), Olfactory_mark (PF06554.8), PDGF 
(PF00341.13), PDGF_N (PF04692.9), PSK (PF06404.8), 
PTN_MK_C (PF01091.14), PTN_MK_N (PF05196.9), 
Phe_ZIP (PF08916.7), RGS (PF00615.15), Rabap-
tin (PF03528.11), STAT_alpha (PF01017.16), 
STAT_bind (PF02864.11), STAT_int (PF02865.13), 
TGF_beta (PF00019.16), TGFb_propeptide (PF00688.14), 
TRADD_N (PF09034.6) and wnt (PF00110.15). We 
searched for such domains in all gene models of H. pul-
cherrimus [24].

Reciprocal BLAST
BLAST software (version. 2.12.0 +) was downloaded 
from NCBI [91]. Amino acid sequences of H. pulcherri-
mus and S. purpuratus were obtained from HpBase and 
EchinoBase, respectively (Hp: HpulGenome_v1_prot.
fa, Sp: GCF_000002235.4_Spur_4.2_protein.faa) [24, 
92]. First, the amino acid sequence of H. pulcherrimus 
was used as the query of the blastp program against the 
S. purpuratus database. We then used each top hit gene 
model as the query for a subsequent blastp search using 
the H. pulcherrimus database. Among these BLAST 
searches, the top hit was the same as the original query 
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for 14,080 genes. Reciprocal BLAST top hit genes are 
shown in the supplemental files.

Whole‑mount in situ hybridization (WMISH)
Eggs and embryos of H. pulcherrimus were obtained from 
the same cohorts used for RNA-seq as described above 
(0, 6, 8, 10, ..., 30 hpf) and fixed with 4% paraformalde-
hyde  in artificial seawater. We obtained three biological 
replicates, and the embryos of replicate 1 are presented 
as the representative samples. Target gene sequences 
were obtained from the public database, and the genes 
were amplified using the following primers: Pppl_224_F, 
ctccgaagctgccatcgaagatattacatt; Pppl_224_R + T3, attaac-
cctcactaaagggaagctactctcggtgcataat; Hypp_1056_F, 
attcccgttatcgcttgaagatgattcgta; Hypp_1056_R + T3, 
attaaccctcactaaagggacaccactcgagagaattttg; Empep_F, 
ctcggatggagagatgacggttcccatctt; Empep_R + T3, 
attaaccctcactaaagggaaatgttctttggttctgcat; Srcr42_F, 
cgttacgtgcaatggtaatattcgcctaca; Srcr42_R + T3, 
attaaccctcactaaagggacttcttttccggtgcagttc; Plod2_F, 
catgagatcgaaaatgcagaaatggaagaa; Plod2_R + T3, 
attaaccctcactaaagggactacgttaatggtgtacgtg; Spsb3_F, 
aaaagctcgtctgcatgccgattccttcat; HpSpsb3_R + T3, attaac-
cctcactaaagggattgaataagcgtgtcctctt. WMISH was carried 
out as described in previous works [80, 93].
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