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Abstract 

Background Opsins are the primary proteins responsible for light detection in animals. Cnidarians (jellyfish, sea 
anemones, corals) have diverse visual systems that have evolved in parallel with bilaterians (squid, flies, fish) for hun-
dreds of millions of years. Medusozoans (e.g., jellyfish, hydroids) have evolved eyes multiple times, each time indepen-
dently incorporating distinct opsin orthologs. Anthozoans (e.g., corals, sea anemones,) have diverse light-mediated 
behaviors and, despite being eyeless, exhibit more extensive opsin duplications than medusozoans. To better under-
stand the evolution of photosensitivity in animals without eyes, we increased anthozoan representation in the phy-
logeny of animal opsins and investigated the large but poorly characterized opsin family in the sea anemone Nema-
tostella vectensis.

Results We analyzed genomic and transcriptomic data from 16 species of cnidarians to generate a large opsin phy-
logeny (708 sequences) with the largest sampling of anthozoan sequences to date. We identified 29 opsins from N. 
vectensis (NvOpsins) with high confidence, using transcriptomic and genomic datasets. We found that lineage-specific 
opsin duplications are common across Cnidaria, with anthozoan lineages exhibiting among the highest numbers 
of opsins in animals. To establish putative photosensory function of NvOpsins, we identified canonically conserved 
protein domains and amino acid sequences essential for opsin function in other animal species. We show high 
sequence diversity among NvOpsins at sites important for photoreception and transduction, suggesting potentially 
diverse functions. We further examined the spatiotemporal expression of NvOpsins and found both dynamic expres-
sion of opsins during embryonic development and sexually dimorphic opsin expression in adults.

Conclusions These data show that lineage-specific duplication and divergence has led to expansive diversity 
of opsins in eyeless cnidarians, suggesting opsins from these animals may exhibit novel biochemical functions. The 
variable expression patterns of opsins in N. vectensis suggest opsin gene duplications allowed for a radiation of unique 
sensory cell types with tissue- and stage-specific functions. This diffuse network of distinct sensory cell types could be 
an adaptive solution for varied sensory tasks experienced in distinct life history stages in Anthozoans.
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Background
Opsins are a family of G protein-coupled receptors 
(GPCRs) associated with animal visual systems [1, 2]. 
Previous phylogenetic analysis has shown that bilaterian 
and cnidarian opsin groups are interspersed and sister 
to each other, suggesting the major branches of this pro-
tein family already diversified in the common ancestor 
of these lineages, with 3–4 opsins thought to be already 
present [1, 3–6]. In all characterized opsins, the protein 
binds to a vitamin-A derived chromophore, forming a 
rhodopsin complex, responsible for absorbing light [2, 
7]. The transduction of light by rhodopsin into a cellular 
signal occurs via a G protein signaling pathway known 
as the phototransduction cascade, leading to down-
stream ion exchange across the membrane and dictating 
the cell’s physiological response [2]. Opsins from dis-
tinct subclades bind to specific G protein alpha subunits 
(Gt, Gq, Gs, etc.), which in turn signal via distinct pho-
totransduction cascades [4, 8, 9]. Eye-associated opsins 
and their phototransduction cascades are well-studied 
in vertebrates and insects [2, 10–12]. The emergence of 
expanded sequencing resources across the animal tree 
of life has led to the discovery of new types of opsins. 
This has changed our understanding of opsin evolution 
and has modified historic interpretations of opsin func-
tion [13–16]. Although eye-related opsins have received 
most attention, the importance of non-ocular opsin 
gene expansions, from which eye-associated opsins have 
repeatedly evolved, is relatively unexplored [5, 17].

The best studied opsins are those expressed in ver-
tebrate or fly eyes. Ciliary-associated (c-) opsins were 
once thought to be exclusive to the vertebrate eye, and 
microvillar associated rhabdomeric (r-) opsins were 
thought to be exclusive to protostome eyes [8, 18–20]. 
C- and r-opsins are now known to be expressed in both 
deuterostome and protostome lineages [14, 20–23] and 
new opsin clades have been found throughout Bilateria 
(xenopsins and tetraopsins, [24–29]). Cnidarian opsins 
are grouped in three clades: cnidopsins, which are found 
throughout Cnidaria, and two anthozoan-specific opsin 
clades (ASO-I and ASO-II) [6, 29]. Cnidopsins are sis-
ter to the bilaterian-specific xenopsins. The positions 
of ASO-I and ASO-II are not consistently supported 
in published available opsin phylogenies [1, 6, 29–31]. 
ASO-I has been found either to be sister to r-opsins or 
sister to all animal opsins [1, 6, 29–31]. ASO-II is con-
sidered sister to ciliary opsins, although this is not well 
supported [1, 6, 30, 31]. However, ASO-II shares intronic 
structure with ciliary opsins, which supports this place-
ment [29]. Together these data suggest at least 3 major 
opsin clades existed in the ancestor of both Bilateria and 
Cnidaria [1, 4, 6, 15, 32]. Evidence from both eyed and 
eyeless cnidarians shows that cnidarian opsins function 

as photoreceptors using canonical phototransduction 
cascades [3, 31, 33–46]. Both sequence homology and 
physiological evidence suggest cnidarian opsin biochem-
istry and function is similar to bilaterian opsins [47].

Among anthozoan opsins, gene family expansions 
have been observed, yet the phylogenetic history and 
potential adaptive consequences remain unknown [6, 
29]. Although anthozoans lack eyes, large numbers of 
opsins have been reported in corals and sea anemones 
[6]. Recent next-generation sequencing in Cnidaria has 
improved phylogenetic sampling and clarified relation-
ships among all animal opsins. However, cnidarian opsins 
have undergone large gene family expansions and tran-
scriptomic studies have failed to consistently identify 
the numbers of opsin genes in each lineage, especially 
within anthozoans [5, 6, 47]. This variability is likely due 
to similar sequences of recent duplicates, spatiotem-
poral restriction or low expression. Without complete 
genomes and manual annotation, the extent of cnidarian 
opsin expansions and potential functional diversification 
remains obscured.

The starlet sea anemone, Nematostella vectensis, is an 
eyeless anthozoan and an ideal model for interrogating 
the evolutionary history and potential functional diver-
sity of opsins. N. vectensis exhibits multiple light-medi-
ated behaviors including spawning, larval swimming, 
and circadian locomotor activity [48, 49]. Previous work 
has shown N. vectensis, like other cnidarians, has many 
opsins; however, estimates of the precise number of 
opsins encoded in the genome of this animal have ranged 
from 30 to 52 [5, 6, 47]. Furthermore, key requisites for 
inferring distinct functions of each NvOpsin, such as 
genomic architecture, complete sequence, and whether 
opsin genes are silent or expressed, have not been ana-
lyzed. With the release of two chromosome-quality 
genomes, we are now able to corroborate transcriptomic 
evidence with genomic loci in this highly duplicated gene 
family [50, 51]. In this study, we reduce the most recent 
estimate of NvOpsins from 52 [6] to 29, closer to previ-
ous estimates [47]. Using evidence from genomic, tran-
scriptomic, phylogenetic, and in  situ mRNA expression 
analyses, we characterize a diverse repertoire of opsins 
from N. vectensis and suggest unique populations of 
opsin-expressing sensory cells have diverse roles across 
life stages in this animal.

Results
Phylogenetic identification and genomic architecture 
of the 29 opsins in N. vectensis
Using multiple genomic and transcriptomic sources of 
evidence, we were able to identify 159 additional opsin 
sequences from 15 recently reported anthozoan tran-
scriptomic and genomic datasets, with each species 
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having between 4 and 22 paralogs (Fig.  1A). We report 
the chromosomal location of all previously reported 
NvOpsin gene models while removing erroneous predic-
tions and adding new loci, identifying a total of 29 dis-
tinct genes (Fig.  1B). We made a maximum-likelihood 
gene tree for the opsin protein family, adding N. vect-
ensis sequences and additional new anthozoan data to 
published cnidarian opsin alignments (Additional file  1 
and Additional file  2). To facilitate comparisons across 
previously published investigations of opsin diversifica-
tion, we have provided a table of N. vectensis opsin IDs 
from previous studies with new genomic identification 
and an updated naming convention (Additional file  3: 
Table  S1). We used this tree to investigate the orthol-
ogy of NvOpsins (Figs. 1, 2, 3). ASO-I opsins are highly 
supported (99.9/100 SH-aLRT/UFboot support) within 
the opsin clade, sister to all  other opsins (Fig.  1C, for 
full tree support values see Additional File 2) [5, 6, 29]. 
Cnidopsins and xenopsins form a monophyletic group 
(88.6/90 SH-aLRT/UFboot support) and the ASO-II 
group is found sister to c-opsins, however this relation-
ship is not highly supported (Fig. 1C). Our tree shows all 
NvOpsins fall into ASO-I, ASO-II, and cnidopsin sub-
clades (Fig. 1C).

To further investigate possible mechanisms of opsin 
diversification, we assessed genomic structure and con-
servation of intron–exon boundaries of opsin genes 
in the N. vectensis genome (Fig.  1D, Additional File 2). 
Investigating chromosomal locations of all NvOpsin 
loci, we found that chromosomes containing multiple 
opsins largely contain genes from the same subclade and 
not from other subclades (Fig.  1B). We further exam-
ined intron/exon structure in NvOpsins and found that 
both NvASO-I genes and 5 of the 12 NvCnidopsins lack 
introns, a hallmark of duplication by retrotransposition 
(Fig. 1B, Additional File 3: Table S1) [29, 38, 40]. By con-
trast, all NvASO-II genes and the remaining 7 NvCni-
dopsins have introns [50]. Together, these results suggest 
tandem duplication and retrotransposition have been 
major drivers of opsin expansion in N. vectensis.

To further examine the evolutionary relationships 
within the xenopsins/cnidopsins clade, we examined 
intronic structure in N. vectensis and representative bila-
terians. Cnidopsins together with xenopsins form a single 
clade suggesting one ortholog was present in the cnidar-
ian/bilaterian ancestor and that each lineage (anthozoa, 
medusozoa, and bilateria) experienced extensive lineage-
specific duplication of this ancestral gene. We compared 
NvCnidopsin intron/exon boundaries to bovine c-opsin 
and a Crassostrea gigas xenopsin. Anthozoan cnidopsins 
are split into two subclades (see below), and all NvCni-
dopsins in Subclade 2 contain introns (Additional file 3: 
Table  S1). None of these cnidopsins share intron/exon 
boundaries with c-opsin, but all Group 2 NvCnidopsins 
share one intron/exon boundary position and phase with 
the oyster xenopsin (Fig.  1D). This conserved intron–
exon structure further supports a common ancestor of 
all cnidopsins and xenopsins and suggests Subgroup 2 
NvCnidopsins are structurally similar to  the ancestral 
cnidopsin.

Extensive duplication and divergence of opsins 
is a common feature of Hexacorallia
The addition of more anthozoan sequences in our phy-
logeny reveals opsin gene family expansions are common 
in Hexacorallia (Fig.  2). In general, all anthozoans have 
two ASO-I opsin paralogs that group into two monophy-
letic subclades, suggesting that two ASO-I opsins were 
present in the common ancestor of this clade. Very few 
lineages exhibit more than two ASO-I paralogs although 
one or both duplicates are absent in several lineages, and 
both NvASOI duplicates are intronless, suggesting gene 
loss, rather than duplication, shaped the evolution of 
ASO-I opsins (Fig. 2A). In contrast, ASO-II opsin para-
logs are expanded, and divergence within and between 
lineages is high (see branch lengths, Fig.  1C). ASO-II 
duplications already occurred in the lineage leading to 
Hexacorallia (Fig.  2B), while additional recent duplica-
tions greatly expanded ASO-II numbers within Hexa-
corallia (Fig.  2A, B). No ASO-II members have been 

(See figure on next page.)
Fig. 1 Phylogenetic placement and genomic architecture of the 29 N. vectensis opsins. A Simplified cnidarian phylogeny adapted from [91]. The 
range of known opsins found in a single species in each group is indicated on the phylogeny (from literature review). N. vectensis is in Actiniaria, 
Hexacorallia, in the Anthozoa (in blue) and has 29 opsins, the most so far identified of any anthozoan. B, C Light blue corresponds to ASO-I, purple 
to ASO-II, and green to cnidopsins. B N. vectensis chromosomes with opsin loci are shown. Nearly all N. vectensis opsins segregate on chromosomes 
by clade. Numbers below each chromosome are length in megabases, ( +) indicates recent tandem duplicates with highly similar sequences. 
Arrowheads indicate direction the gene is found in the genome. C Maximum likelihood tree of 708 opsins, with major animal opsin clades labeled 
(Tetraopsins include RGR/Go opsins/Group 4 opsins). Cnidarian-specific clades are colored and in bold. IQtree branch support is defined by ultrafast 
bootstraps (Ufboot) and likelihood ratio test (SH-aLRT). The number of N. vectensis opsins in each clade is listed (blue numbers). D Conservation 
of intron structure in the cnidops/xenops clade. A representative xenopsin from the oyster Crassostrea gigas shares an intron/exon boundary with all 
other xenopsins investigated [29] and several N. vectensis cnidopsins. Red box shows intron/exon boundary mapped on to amino acid alignment. 
Gray bars represent aligned sequence, black lines are gaps in the alignment
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identified in any Octocorallia species (soft corals, sea 
pens), suggesting a loss in this lineage. The presence of 
two ASO-II sequences from ceriantharians (tube anemo-
nes) suggests a minimum of two ASO-II opsins were pre-
sent in the last common ancestor of Hexacorallia. Within 
the ASO-II clade, previously identified ASO-II 2.1 and 
2.2 subgroups [6] are well supported. Previously identi-
fied Subgroup 1 is less well supported, and this large 
group shows four duplication events occurred in the line-
age leading to Scleractinia and Corallimorpharia. Among 
sea anemone opsins, parallel duplications have occurred 
between the major anemone subfamilies (Anenthemo-
nae—to which N. vectensis, Scolanthus, and Edwards-
iella belong, and Enthemonae to which all other included 
species belong) (Figs.  2A, 3B). Subgroup 2.1 has fewer 
duplications in hexacorallian lineages than Subgroup 1. 
Sister to Subgroup 2.1 is a newly identified group includ-
ing the highly divergent NvASOII-4 sequence (Figs.  3B, 
4B), orthologs of which were identified in Corallimor-
pharia and Scleractinia but not found in any other sea 
anemone. Previously Subgroup 2.2 was thought only to 
contain sea anemone sequences [6]. The addition of new 
data identifies cerianthid, zoanthid, and corallimorphar-
ian sequences, suggesting this subgroup of opsins arose 
in the last common ancestor of Hexacorallia (Fig. 3B).

Within the cnidopsin clade, we identify one well-
supported subclade containing only Hexacorallia and 
another clade containing all anthozoan lineages (Figs. 2, 
3C). This suggests one cnidopsin ortholog was present in 
the common ancestor of anthozoans and a duplication 
event occurred in the common ancestor of Hexacorallia. 
Like the ASO-II group, multiple lineage and species-spe-
cific duplications have expanded cnidopsin numbers in 
anthozoans. Cnidopsin Subgroup 1 contains all the octo-
corallian sequences in a single well supported clade, with 
at least one octocorallian-specific duplication event or 
multiple species-specific events. No cerianthid sequences 
were identified as cnidopsins, though one is likely placed 
improperly in the bilaterian-specific xenopsins, and likely 
to be the cerianthid cnidopsin ortholog (Additional file 2). 
The ancestor of Scleractinia and Corallimorpharia dupli-
cated their Group 1 and Group 2 opsins at least once, 
followed later by multiple species-specific duplications 

(A. digitifera, six opsins, Discosoma, eight opsins). In N. 
vectensis, lineage-specific expansions led to 12 total cni-
dopsins, in parallel to multiple independent duplications 
in the other sea anemone group, Enthemonae. Together 
our phylogeny reveals extensive duplication of opsins 
throughout the diversification of anthozoans contributed 
to the expansive repertoire of opsins in N. vectensis and 
other cnidarians.

To better understand this evolutionary history Antho-
zoan gene loss and gain, we inferred ancestral opsin 
numbers through multiple methods. We first assessed 
the pattern by parsimony considering the gene tree 
structure and the minimum number of gains and losses 
for both each opsin clade and each anthozoan lineage 
(Fig. 2B). To support this work with more formal analysis, 
we used Mesquite to reconstruct ancestral states using 
opsin counts as both continuous and meristic data (Addi-
tional file 4: Fig. S1). Mesquite predicted similar patterns 
of opsin gains and losses in the anthozoan species tree, 
but missed losses that we infer from phylogenetic rela-
tionships in the gene tree. To include phylogenetic signal 
we used Notung to predict gains and losses (Additional 
file  4: Fig. S2). Notung predicted major losses that we 
infer through gene tree topology. Surprisingly, Notung 
predicted far more opsin duplicates early in animal evo-
lution (14 at the ancestor of Eumetazoa) and far more 
losses in the leaves of the species tree (Additional file 3: 
Table S2, Additional file 4: Fig. S2, 3).

NvOpsins are intact GPCRs with a potential diversity 
of functions
In addition to phylogenetic placement, we assessed 
whether the 29 NvOpsins were capable of functioning as 
GPCRs and the protein components of photopigments 
by analysis of conserved functional residues. The most 
basic criteria for any opsin to function as a photopig-
ment are the presence of seven transmembrane domains, 
which form a chromophore binding pocket, and the pres-
ence of a lysine at position 296 (bovine rhodopsin num-
bering), which binds to the chromophore (Fig.  4A) [2]. 
The presence of a pair of cysteines to stabilize the opsin 
structure via a disulfide bridge is additionally required 
(Fig.  4A) [52]. A negatively charged residue known as 

Fig. 2 Current and ancestral anthozoan-specific opsin duplications. A Anthozoan species with opsin data are listed. Each column is the subclade 
number within the three major anthozoan opsin clades. “Un” is ASO-II opsins that are unspecified, or not found in previously identified clades. 
The number of opsins for each species and opsin subclade is listed in the boxes. Gray boxes with 0 signify genomic evidence of no opsins, 
while white boxes signify no opsin identified from transcriptomic evidence. Species names in bold have genomic evidence available, asterisks are 
for species with newly reported opsins in this study. B Anthozoan lineage tree, with numbers of opsins represented by line thickness and estimated 
by parsimony based on opsin numbers and phylogenetic positions (Fig. 3). Numbers in boxes represent the estimated number of opsins present 
in the last common ancestor of each anthozoan lineage. An increase in thickness of lines signifies an opsin duplication while an x signifies loss 
of the gene. The dashed line signifies uncertainty due to limited sampling in Octocorallia

(See figure on next page.)
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the counterion is thought to be required to stabilize the 
interaction with the chromophore, but the specific site 
and residue of this counterion can vary across opsins 
clades [2]. Beyond these basic functional features, con-
served sites on the cytoplasmic tail/loops bind to specific 
G protein alpha subunits, which are required for acti-
vating the phototransduction cascade [53, 54]. Opsins 
within a clade are usually specialized in binding one or 
limited number of G protein alpha subunit subtypes (Gt, 
Gq, Gs, etc.) [8]. The few bilaterian and jellyfish opsins 
that have been characterized in detail have identified spe-
cific functionally relevant amino acid sites and identities 
required for G protein signaling [41, 42] (Fig. 4A).

All NvOpsins have the canonical seven transmembrane 
domains and all but one have the conserved lysine, Lys-
296 (Fig. 4B). Interestingly, NvASOII-4 has a Lys296His 
substitution at this site, suggesting a non-photoreceptive 
function (Fig. 4B). Previously identified counterion sites 
included Glu-113 in vertebrate ciliary opsins and Glu-
181 in invertebrate Go-coupled opsins and Gq-coupled 
r-opsins [8, 55]. There is some evidence that Asp-83 is the 
counterion site for Gq-coupled melanopsin, the r-opsin 
found in vertebrates, and Glu-94 is the counterion in 
cubozoan Gs-coupled cnidopsin [8, 41]. No NvOpsin has 
Glu-94 (cubozoan) or similar negatively charged amino 
acid at this position, however some have either Glu-181 
or Glu-113 and NvASOII-1 have both (Fig. 4B). All NvC-
nidopsins, most NvASO-II, and one NvASO-I sequence 
has Asp-83, while other NvASO-II and NvASO-I 
sequences has an Asn substitution at the Asp-83 site. 
Only NvASOII-4 has neither aspartic acid nor asparagine 
in this position, instead having Cys-83 (Fig. 4B). Together 
sequence analysis suggests NvOpsin paralogs tend to 
have bilaterian-like counterion residues while the Glu-94 
counterion appears to be an evolutionary novelty in box 
jellies.

Spectral tuning—the shift in the spectrum of wave-
lengths an opsin-based visual pigment absorbs—can 
be mediated by amino acid substitutions that affect 
the interaction with the chromophore [56]. Two sub-
stitutions, Asp83Asn and Ala292Ser, result in opsin 

absorbance shifts from green toward blue, and have 
evolved independently in multiple vertebrates [57–59] 
and insects [60, 61]. We find that in many N. vectensis 
sequences, one or both substitutions are also present, 
and evolved independently within N. vectensis opsins 
multiple times (Fig.  4B). This suggests potential blue 
shifts in wavelength absorption compared to related 
opsins, although the absorbance spectra of these opsins 
remain to be measured. The functional relevance of 
other amino acids at either of these sites is unclear. The 
conservation of these sites in opsins as distantly related 
as c- and r- opsins suggests their presence is also 
involved in spectral tuning of N. vectensis opsins, but 
further functional evidence is needed for confirmation.

We also investigated conservation of sites known to 
be important in G-protein signaling. In the rhodopsin-
like GPCR family, the conserved tripeptide Asp/Glu-
Arg-Tyr/Trp at sites 134–136 is known to be important 
for receptor activation, located after the third trans-
membrane domain in the second intracellular loop [62–
64]. Only NvASOI-1 and NvCnidop-4 have all three of 
any of these residues. Most NvCnidopsins have a simi-
larly positively charged lysine in place of arginine at site 
135, which may be a conservative substitution. We also 
searched for three known motifs that directly interact 
with the G protein alpha subunit and are important 
for G protein signaling activation [65]. Most N. vecten-
sis opsins have NPXXY at these sites, but some of the 
NvASO-II sequences are divergent at this highly con-
served motif. Another known functional motif is the 
tripeptide at sites 310–312 followed by a conserved FR 
sequence (313–314). The canonical c-opsin and r-opsin 
tripeptide is NKQ and HMK, respectively, while the 
functional box jelly photopigment, Tcop13, has HKQ at 
this site [40]. In the box jelly opsin, in vitro substitution 
with other tripeptides did not result in inactivation of 
Gs signaling, but instead altered the dynamics of light 
response in cell lines [40]. The FR motif is conserved 
in NvOpsins, but none of the known tripeptide motifs 
are found in any NvOpsin. Given the T. cystophora evi-
dence, these data may suggest functional diversity in 
binding dynamics of G proteins across NvOpsins.

(See figure on next page.)
Fig. 3 Anthozoan-specific opsin evolutionary patterns of duplication and loss. Trees are zoomed subsets of the maximum-likelihood tree (Fig. 1C) 
for each anthozoan opsin group. Species names and branches are color coded according to lineage. Support for branches is denoted with a black 
circle or a white circle. A ASO-I group opsins are split into two main subclades, with most anthozoans having an opsin duplicate in each subclade. 
B The ASO-II group is sister to c-opsins and comprised exclusively of opsins from hexacorals. Previously identified ASO-II Groups 2.1 and 2.2 [6] 
are well-supported but ASO-II Group 1 is not. C Anthozoan cnidopsins form a single well-supported clade within the larger cnidopsin/xenopsin 
clade. Within Anthozoan cnidopsins there are two sister clades, one of which is well-supported while the other is not. For clarity, branch lengths 
are transformed, and branch support is not shown for branches leading to the two shallow-most nodes on these trees (For full tree topology 
and support values see Fig. 1C, Additional File 2)
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Opsin expression is dynamic throughout N. vectensis 
tissues during development
To investigate which tissues may play a role in light-sen-
sitive behaviors, we analyzed spatiotemporal patterns of 
opsin expression in N. vectensis using a combination of 
RNA-seq and in  situ hybridization. The lifecycle of N. 
vectensis proceeds from fertilization to blastula stage by 
12 h and gastrula stage by 24 h. By 48 h a swimming plan-
ula larva stage develops [66]. This stage is characterized 
by an aboral ciliated sensory organ known as the apical 
organ, which faces forward when swimming. By 10 days 
post-fertilization mesenteries and four tentacles form 
and elongate and the planula metamorphoses into a pri-
mary polyp.

We generated a high-quality de novo assembled tran-
scriptome from four developmental stages (blastula, gas-
trula, mid-planula, and primary polyp) as well as male 
and female adults. Out of 221,245,806 total reads, 96.29% 
were properly paired and used for downstream applica-
tions with a BUSCO completeness of 97.9%. Replicate 
libraries of the same stage were highly concordant with 
one another (Additional file  4: Fig. S4). The RNA-seq 
time course analysis revealed that NvASOI-2 is highly 
expressed at blastula stage relative to all other opsins 
(Fig.  5A, top scale). We show the rest of the expres-
sion data scaled without this highly abundant transcript 
(Fig.  5A, bottom scale). The time course analysis allows 
for qualitative comparison across developmental stages 
for each opsin transcript. Many NvOpsins peak in expres-
sion at different stages, including blastula (NvASOII-8a, 
-9a), gastrula (NvASOII-9b), planula (NvASOII-3; NvC-
nidop-1, -3, -9), and primary polyp (NvASOII-2a, -2b -3, 
-6a; NvCnidop-2b, -4, -6b) (Fig. 5A). We also compared 
our data with a published developmental time course 
(NvERTx) for all opsins found in that dataset [67], which 
generally agreed with our expression levels and provided 
additional time resolution at early stages (Additional 

file 3: Table S3; Additional file 4: Fig S5). Light is known 
to induce spawning in N. vectensis and other cnidarians, 
so we wanted to know whether some opsins were spe-
cific to adults or specific to sex. Our comparison between 
adult males and females showed several opsins that were 
expressed in both adult sexes as well as six opsins that 
suggests variable expression by sex. The data suggest that 
NvASOI-2, NvCnidop-2, and NvCnidop-8 are upregu-
lated in females, while NvASOII-6b and NvCnidop-4 are 
more highly expressed in males (Fig.  5B). Together the 
RNA-seq data suggest dynamic expression of distinct 
NvOpsins throughout development and across sexes.

To corroborate our RNA-seq analysis and better under-
stand tissue specificity, we performed in  situ hybridi-
zation for select opsin genes at peak expression levels 
(Fig.  6). Our expression studies show that tissue- and 
stage-specific expression patterns do not correlate with 
phylogenetic signal. Opsins of distinct clades are found 
in both germ layers and sometimes have overlapping 
expression patterns. Opsins from each major clade were 
expressed in both embryo and polyp stages (Figs. 5, 6).

In embryonic and larval stages, we observed opsin 
expression in both ectoderm and endomesoderm. 
NvASOII-8b is expressed by gastrula stage in scattered 
cells throughout the ectoderm (Fig. 6A, A′) and by late 
planula, there is also expression in the sensory apical 
organ (Fig. 6B, B′). Both NvCnidop-9 and NvASOI-1 are 
expressed in the ectoderm at planula stages (Fig.  6C–
E′) and are expressed in scattered cells of the abo-
ral ectoderm but are not expressed in the apical organ. 
NvASOI-2, the opsin with the highest expression in the 
RNA-seq dataset, is detected in scattered cells at late 
blastula stage and its expression expands into the ecto-
derm in larval stages (Fig.  6F–H′). Expression is con-
centrated orally as development continues, eventually 
forming a ring around the oral region in the late planula 
stages (Fig. 6H, H′).

Fig. 4 N. vectensis opsins have high levels of sequence diversity at canonically conserved functional sites. A Left, cartoon bovine rhodopsin 
structure showing 7 transmembrane domains surrounding the vitamin A derived chromophore and the highly conserved lysine at position 
296 (black) required for chromophore binding. The glutamic acid counterion (orange) is conserved among vertebrate c-opsins and important 
for chromophore binding. Right, cartoon diagram of bovine rhodopsin sequence with select functional sites color coded by functional category, 
matching the numbered sites in B. Cartoon G protein subunits are shown bound to rhodopsin. The specific G protein alpha subunit can vary (letters 
in parentheses) depending on opsin sequence, with functional implications for type of signaling cascade activated. B Left, maximum-likelihood 
phylogeny of N. vectensis opsins, with IQtree2 support. Right, select N. vectensis opsin amino acids are aligned with bovine rhodopsin (c-opsin), D. 
melanogaster r-opsin, and T. cystophora cnidopsin. Canonically conserved functional residues and positions follow bovine rhodopsin numbering 
and correspond to A. From left to right, the first box contains structural features minimally required for function in all opsins. 7TM indicates protein 
sequence has seven transmembrane domains. Black is the conserved Lys(K)296; yellow shows conserved cysteine residues that form a stabilizing 
disulfide bridge. Second box lists known counterions from bilaterian and box jelly opsins (orange). Third box shows a conserved spectral tuning 
site across opsin clades (blue). A second spectral tuning site is also found at counterion site Asp(D)83. Substitutions known to cause a blue shift 
in both sites are shaded blue. Fourth box contains conserved sites known to be important for G-protein signaling (light gray). NvOpsin residues 
that are conserved at the known functional sites are shaded in dark gray. Rightmost, NvOpsins are labeled by subclade within each major 
anthozoan opsin clade

(See figure on next page.)
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NvASOI-2, which is expressed in ectoderm in larval 
stages, is found in endomesodermal tissue surrounding 
the pharynx at the time of tentacle bud formation and 
into the primary polyp stage (Fig. 6I–L′). NvCnidop-6b 

is also expressed in clusters of cells within the phar-
yngeal endomesoderm and extends aborally into the 
mesenteries (Fig.  6M–N′). Distinct tissue- and stage-
specific expression of opsins from distinct subclades 
suggests different functions throughout development.
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Discussion
We have identified 29 opsins in the genome of N. vecten-
sis, the most of any anthozoan so far investigated [6, 38]. 
Maintenance of complete coding sequences, evidence of 
distinct genomic loci for similar paralogs, and expression 
patterns lead us to conclude with high confidence these 
encode bona fide opsin proteins. Our addition of recent 
anthozoan phylogenetic data has revealed new pat-
terns of duplication and evolution, both in understudied 
cnidarian lineages and poorly characterized opsin clades. 
N. vectensis shows large lineage-specific expansions in 
both cnidopsins and ASO-II opsins. While N. vectensis 
opsins are conserved with related bilaterian opsins  in 
structural domains, significant divergence at canoni-
cally conserved putative sites suggests high functional 
diversity. The investigation of anthozoan opsin clades 
not found in medusozoans potentially leads to novel 
opsin functional diversity. This is also reflected in mRNA 

expression, where multiple opsins are expressed dynami-
cally throughout development, differentially expressed 
between adult sexes, and spatially restricted to specific 
cell types and tissues.

A prime example of this observed diversity is opsin 
NvASOII-4, which has a His296Lys amino acid substitu-
tion. This lysine is almost universally conserved across 
all animal opsins and it is essential for the covalent bond 
with a vitamin-A derived chromophore, necessary for 
absorbing photons. The presence of His at this site could 
suggest a novel chromophore for NvASOII-4. Alterna-
tively, this opsin may not have a light-related function. 
It is becoming increasingly clear animal opsins are not 
exclusive for light sensing [68]. It has been shown in D. 
melanogaster that opsins are involved in thermal sensing 
[69], proprioception [70], taste [71], and more. Though 
the biochemical mechanism and signaling dynamics have 
yet to be understood, ion channels such as TRP channels 
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involved in visual transduction play a role in these sen-
sory modalities as well. Many of the canonical opsin 
amino acid motifs are not conserved in NvOpsins. These 
proteins may function as photoreceptors and interact 
with their binding partners in different ways. It is also 
possible these opsins have non-canonical functions. In an 
eyeless animal with an abundance of opsin proteins, N. 

vectensis may be a prime candidate to study the evolution 
of opsin novelty and structure–function relationships in 
this protein family.

Our opsin tree was able to capture more anthozoan-
specific opsin evolutionary history than previous work 
due to increased sampling with recently available 
sequencing. Our data show expansions in both ASO-II 
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and cnidopsins are concentrated in Hexacorallia and 
duplications have occurred at both ancient and recent 
timescales (Fig. 3). In contrast, genomic data and anal-
ysis of the gene tree suggest loss of opsin genes over 
time. ASO-I and Medusozoan cnidopsins are intron-
less suggesting that they are a result of duplication by 
retrotransposition. The ancestral gene, has either been 
subsequently lost or is highly diverged in another clade. 
Medusozoan ASO-II loss is inferred if ASO-II is indeed 
sister to C-opsins, as this suggests this clade was pre-
sent before the split of Cnidaria and Bilateria. Xenop-
sins are only found in Spiralia but are in a clade with 
Cnidopsins, suggesting a loss of related opsins in other 
bilaterian lineages. Our data suggest that while recent 
opsin duplication appears to be the norm, loss of mul-
tiple orthologs from an early repertoire of opsins could 
have occurred while early animal lineages diverged.

A limitation to this and other trees is that  mRNA 
sequencing tends to miss opsins expressed at a 
restricted stage, within a restricted tissue, or those that 
are too similar to be distinguished by assembly algo-
rithms. Our analysis of two chromosome-level genomes 
was able to add and remove erroneously annotated 
or previously missed N. vectensis opsins. More high-
quality long-read genomic sequencing would greatly 
increase confidence in opsin numbers for many species 
and help define patterns of opsin duplication and loss in 
Cnidaria. Genomic sequence would also help with cross 
species contamination from wild caught transcriptomic 
references. The addition of our anthozoan sequences 
placed five anthozoan opsin sequences in the R-opsin 
clade, and two in the medusozoan-specific cnidopsins, 
which are likely contaminations. In addition, vari-
able phylogenetic support for deep opsin relationships 
between Bilateria and Cnidaria requires methods such 
as intron analysis to show evidence of shared ancestry. 
All medusozoan opsins are cnidopsins and nearly all 
are intronless [40]. The hydrozoan Clytia hemispher-
ica is an exception, with two intron-containing opsins. 
However, neither of these intron-containing opsins 
share intron/exon boundaries with any other cnidarian 
opsin or xenopsin [31, 72]. We show for the first time 
using genomic data from N. vectensis that the cnidop-
sin locus shares a common intron/exon structure with 
xenopsins in bilaterians. The lack of introns in meduso-
zoan and some N. vectensis cnidopsins suggests dupli-
cation by retrotransposition may have occurred early in 
the expansion of cnidopsins or in parallel after Antho-
zoa and Medusoza split. Furthermore, this suggests a 
medusozoan-specific loss of the original intron-con-
taining genes, while some Anthozoa have maintained 
this ancestral gene structure shared by xenopsins.

Expression of NvOpsins is dynamic, found across life 
stages, tissue types, and sexes. NvASOII-8b, found only at 
the swimming stage and in the sensory apical organ, may 
function in larval light detection and control of swim-
ming. Others, such as NvCnidop-6b, are found in the 
developing mesenteries and upregulated in adult males, 
relative to females, suggesting a role in reproduction. 
This would be expected, as spawning is light-induced 
in N. vectensis [48]. NvASOI-2 is highly expressed early 
and persists through adult stages, its expression domain 
changes over time, and it is sexually dimorphic in adults. 
Primordial germ cells develop in the mesenteries near 
the pharynx, at a similar location to NvASOI-2 expres-
sion [73]. Together this suggests important functional 
roles throughout development and a possibly distinct 
adult role in reproduction (Fig. 7). Functional studies in 
other anthozoans have suggested many light-dependent 
behaviors may be mediated by specific opsins though 
none have directly shown this in any anthozoan. In cor-
als, some opsins are expressed at the aboral pole of the 
swimming larva—similar to NvASOII-8b—and were 
proposed to be involved in light detection while swim-
ming [34]. In coral, some opsins have been proposed to 
be important for broadcast spawning or algal symbiosis 
though neither has been shown directly [43, 74]. Unlike 
corals, where husbandry and functional genetics can be 
challenging, N. vectensis is amenable to laboratory study 
and genetic manipulation. By molecularly characterizing 
the opsins in this animal, it will now be possible to per-
form experiments to better characterize light-mediated 
behaviors and link them with cell physiology and specific 
opsin functions.

Although the divergence from canonically con-
served sites suggests new and unidentified functions, 
we hypothesize that N. vectensis has multiple functional 
opsin photopigments because the animal exhibits several 
light-mediated behaviors [48, 49]. It is possible that shal-
low-water species like N. vectensis and other anthozoans 
like reef corals are exposed to more variable light envi-
ronments, using light sensory information for spawn-
ing, substrate settling, defense, and predation. It remains 
unknown whether opsin gene family expansion in the 
Hexacorallia is adaptive for these animals, however, 
our findings suggest a diversity of opsin-expressing cell 
types involved in multiple light-mediated functions in N. 
vectensis.

Methods
Animal care
N. vectensis adults were kept in 1/3 concentration artifi-
cial sea water in glass dishes on a 12 h light/dark cycle 
at 18  °C. Animals were fed freshly hatched Artemia 
five times per week. Spawning was induced by placing 
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animals at 24  °C overnight with light. Eggs and sperm 
were collected separately within 2 h after spawning and 
fertilized in a new Petri dish and were left to develop at 
room temperature.

Opsin identification and phylogenetics
Initial N. vectensis opsin sequences were collected from 
three published datasets [5, 6, 47]. All potential N. vecten-
sis sequences were aligned in Geneious Prime v.11.0.12, 
and identical matches and fragments were discarded. 
BLAST was used with the final set of opsins as bait to 
search against the Nematostella vectensis Embryogenesis 
and Regeneration Transcriptomics database (NvERTx) 
[67], our own reference transcriptome (generated for 
this study), and two publicly available chromosome-
level genomes: v2 genome hosted by the Stowers Insti-
tute [50, 75], and the genome from the Darwin Tree of 
Life Programme at the Wellcome Sanger Institute (ENA 
submission accession: ERA9667479) [51]. Hits were 
added inclusively and combined with a modified align-
ment including non-redundant sequences from Vöcking 
et  al. 2017, Picciani et  al. 2018, and Gornik et  al. 2021 
opsin phylogenies [5, 6, 29]. These included outgroups 
from closely related GPCRs, including melatonin recep-
tors and Trichoplax opsin-like proteins. We then added 
opsin sequences from new anthozoan transcriptome 
and genome data. We added opsins from 12 species with 
new transcriptomes, and 3 species from new genomic 
data (Additional file  3: Table  S4). This was done using 
N. vectensis and Acropora digitifera sequences from 

ASOI, ASOII, and Cnidops groups as bait for BLAST 
searches. The top 100 BLAST hits were initially con-
servatively kept. All sequences were aligned in Geneious 
using MAFFT v7.450 with default settings [76]. FastTree 
was used in Geneious to check the tree, removing unan-
notated outgroups from the multiple cnidarian and N. 
vectensis BLAST searches. Trimmed (using TrimAl) and 
untrimmed alignments were generated, but untrimmed 
sequences generated the best supported phylogeny and 
are reported here.

Final maximum-likelihood gene trees were constructed 
using IQtree2 with the following command: iqtree2 
–s <alignment.phy> -st AA -nt AUTO -v -m TEST -bb 
1000 -alrt 1000 [77] on the Minnesota Supercomputing 
Institute’s (MSI) High Performance Computing system 
at the University of Minnesota. The LG + G4 model of 
protein evolution was auto-calculated from this com-
mand, and 1000 ultrafast bootstrap (UFboot) replicates 
and SH-aLRT tests were used for evidence of support. 
Clades were considered supported only with > 80% SH-
aLRT/ > 95% UFboot support. The tree was rooted based 
on known outgroups from previous phylogenies.

Predictions of opsin gene counts in the early branch-
ing lineages of Anthozoa were assessed three ways. We 
assessed manually by parsimony considering the topol-
ogy of the gene tree and the species relationships. Sub-
clades with species within shared lineages were counted 
for the minimum number of duplications required 
for each anthozoan lineage and mapped to each node. 
Mesquite v3.81 was used with the species tree shown 
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in Additional File 4: Figs.  S1, S2, S3, and opsin counts 
from Fig.  2B. Default analyses were performed assess-
ing the data as both continuous and meristic count data. 
Notung analysis was performed according to default set-
tings, with the same species tree and the entire gene tree 
(Fig. 1), which was automatically pruned to include only 
species in the gene tree [78].

Genomic and opsin sequence analysis
To identify distinct opsin paralogs, we used BLAST with 
transcripts identified as NvOpsins above as bait to iden-
tify genomic loci, resulting in the identification of 29 
opsin genes. We manually identified intron/exon bound-
aries at all cnidopsins with introns by aligning coding 
sequences to the genome and translated these to identify 
their location and phase on the protein. We then aligned 
the cnidopsin amino acid sequences with a xenopsin and 
bovine c-opsin in Geneious and mapped exon boundaries 
manually onto the alignment. Opsin genomic coordi-
nates for both new Nvec genomes [50, 51], and previous 
Nvecv1 scaffold coordinates [79] are found in Additional 
file  3: Table  S1. We used InterPro scan in Geneious to 
predict the seven transmembrane domains. Using bovine 
rhodopsin as a reference, we aligned our 29 opsins, Dros-
ophila r-opsin and T. cystophora cnidopsin sequences to 
identify residues at canonically conserved positions.

A few tandem loci next to NvASOII-8a, NvASOII-8b, 
NvASOII-9a, NvASOII9b, NvASOII-7, and NvASOII-4 
genes were found in the v2 genome [50] whose nucleo-
tide sequences were nearly identical (> 97% similarity). 
We noticed adjacent non-coding intra- and intergenic 
regions were also near-identical, suggesting these may 
be haplotype differences and not real paralogs. One of 
these adjacent pairs also was split by a section of Ns in 
the genome (Additional file 4: Fig. S6), an indicator of dif-
ficulty with assembly in this region. We compared these 
trouble spots with the Wellcome-Sanger genome [51] and 
for each, found only one of the two near-identical pairs, 
further evidence that these copies are a result of assembly 
error, while other high-similarity but distinct loci were 
left in our final opsin count.

RNA‑sequencing and analysis
Libraries were generated from two independent spawns 
each at blastula, gastrula, planula, primary polyp stages, 
two adult males and two adult females. Adult animals 
had been kept in normal laboratory conditions at 18°C 
with a 12 h light/12 h dark photoperiod and at least one 
week since they were last spawned. Live animals were 
placed directly into Trizol reagent and tissue was homog-
enized in a microcentrifuge tube with a pestle before per-
forming RNA extraction. Total RNA was extracted from 
Trizol (Invitrogen), gDNA removed by gDNA cleanup 

kit (Qiagen), RNA was precipitated using isopropanol 
and then cleaned up using ethanol precipitation. Librar-
ies were prepared using Kapa Stranded RNA Hyperprep 
(Illumina), quality control and size selection were per-
formed by the Bauer Core at Harvard University and 
paired end, 150-bp reads were sequenced on an Ilumina 
NovaSeq.

Raw sequencing libraries were processed for errone-
ous k-mers and unfixable reads using rCorrector [80]. 
Adapter sequences were trimmed using Trim Galore 
(Babraham Bioinformatics, UK), and rRNA reads were 
mapped to the N. vectensis mitochondrial genome and 
removed using Bowtie2 [81]. All libraries were com-
bined to generate a single de novo transcriptome assem-
bly using Trinity v2.12.0 [82]. Transcriptome quality was 
assessed by checking alignment statistics and quantify-
ing BUSCO completeness [83]. We used EvidentialGene 
to combine gene and transcript evidence from multiple 
sources and reduce the number of genes in our transcrip-
tome [84]. We used our own transcripts, and three other 
assemblies [50, 67, 85], and the coding sequences from 
v2 genome [50], as input. We used the EvidentialGene 
output for our final transcriptome. mRNA quantifica-
tion was done using Kallisto for each of our 12 libraries 
using our de novo assembled transcriptome [86]. Stages 
were normalized and compared using the time course 
analysis in Sleuth run in R, and adult libraries only were 
additionally pairwise compared using Sleuth [87]. The 
data for heatmaps were extracted from the Sleuth object 
using normalized transcripts per million (TPM) in either 
the timecourse analysis or male v. female compari-
son. Heatmaps were made with the heatmap command 
in gplots package [88] using R v4.2.3 run in RStudio 
v2022.12.0 + 353 [89].

RNA probe synthesis
Tissue for probe synthesis was pooled from the same 
developmental stages as RNA-seq and homogenized 
in TRIzol (Invitrogen). Total RNA was then extracted 
with chloroform and cleaned up using a Qiagen RNe-
asy mini kit. cDNA was made from total RNA using the 
iScript advanced kit (Bio-Rad). Primers were designed 
in Geneious (modified Primer3 v2.3.7) (Additional file 3: 
Table S5). PCR was used to amplify opsin sequences from 
cDNA and size checked by gel electrophoresis. Properly 
sized products were ligated to the pGEM T-Easy plas-
mid (Promega), transformed into chemically competent 
DH5-alpha E. coli cells (New England Biolabs). Plasmid 
DNA was isolated using the Qiagen miniprep kit and 
sequenced for confirmation and orientation of insertion 
into plasmid. Restriction digests linearized the plasmid, 
were cleaned up using the Qiagen PCR clean up kit, and 
antisense probes were generated using either Ambion T7 
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or SP6 megascript RNA polymerases with digoxigenin-
labeled (DIG) nucleotides. Probes were cleaned up with 
Qiagen RNeasy micro kit and eluted in 14  μL. Proper 
transcription of the probe was checked on a gel. Clean 
probe was stored at a 50/50 concentration with forma-
mide at − 20° C. When ready to use, probe was diluted 
1:1000 in hybridization buffer.

In situ hybridization
In situ hybridization was performed according to Wolen-
ski et  al. 2013, with slight modification [90]. Before 
fixation, embryos at blastula and gastrula stages were de-
jellied by rocking in 40  mg/mL L-cysteine in 1/3 × arti-
ficial sea water (Instant Ocean) for 10 min. Planula and 
polyp stage animals were immobilized by gently adding 
6.5% magnesium chloride in 1/3 seawater. Embryos were 
fixed in glass vials for 90 s in ice cold 0.25% glutaralde-
hyde/4% paraformaldehyde (PFA) in phosphate buffered 
saline (PBS). This was removed, 4% PFA was added, and 
embryos were fixed on a rocker for 1 h at 4 °C. PFA was 
washed out with PBS with 0.1% Tween-20 (PTw) and 
embryos were stored in methanol at −  20  °C. To begin 
in situ hybridization, embryos were stepped out of meth-
anol and into PTw, then treated with 0.01  mg/mL pro-
teinase K, followed by two glycine washes (2  mg/mL), 
and two 1% triethanolamine washes in PTw. Embryos 
were then washed first at 3 μL/mL then 6 μL/mL of ace-
tic anhydride/1% triethanolamine in PTw. These were 
washed out in PTw then fixed in 4% PFA for one hour 
on a rocker at room temperature. PFA was washed out 
with PTw and embryos were pre-washed in hybridization 
buffer (hyb) (50% formamide, 5 × SSC, 50 μg/mL heparin, 
0.1% Tween-20, 1% SDS, 100 μg/mL herring sperm DNA, 
370 μL 1 M citric acid) for 10 min at room temperature. 
This was replaced with a second hyb wash, and sealed 
vials were kept at 63 °C for at least 12 h.

Following pre-hybridization, DIG-labeled RNA probes 
were diluted 1:1000 in hybridization buffer and preheated 
to 90  °C. Animals were transferred to mesh baskets in 
24-well plates at 63 °C. All subsequent washes were per-
formed by quickly transferring baskets to new wells with 
fresh solution. Probe was added to wells and baskets 
were transferred quickly into probe and left at 63 °C for 
at least 48  h. Probe was removed and stored for reuse, 
embryos were washed twice with hybridization buffer, 
and stepped 25%, 50%, and 75% SSC concentrations 
in hybridization buffer up to 100% 2 × SSC solution, at 
63°C. Next embryos were washed in 0.02 × SSC, removed 
from heat and stepped into 25%, 50%, and 75% PTw in 
0.02 × SSC, up to 100% PTw. Embryos were then washed 
in 1 × Roche blocking reagent for 1–2 h at room tem-
perature. Block was replaced with alkaline phosphatase-
labeled (AP) anti-DIG Fab fragment antibody (Roche) 

in Roche blocking reagent at a concentration of 1:5000, 
rocking overnight at 4  °C. The next day, antibody was 
removed, and embryos were washed 10 times for 15 min 
each in phosphate buffered saline with 0.1% Triton-X, 
then AP reaction buffer (100 mM NaCl, 50 mM  MgCl2, 
100 mM Tris, pH 9.5, 0.5% Tween-20) minus  MgCl2, fol-
lowed by two washes of AP buffer with  MgCl2. Finally, 
embryos were placed in BCIP-NBT (Promega) with AP 
buffer to react. Solution was checked for color change 
and replaced every half hour for the first several hours 
then once a day up to several weeks at 4 °C, depending on 
speed of the reaction. When the chromogenic reaction 
was finished, embryos were washed in order with: PTw, 
water, ethanol, water, and PTw, then postfixed with PFA 
and cleared with 90% glycerol. Embryos were mounted 
on slides and imaged with DIC optics on a Zeiss Axioim-
ager microscope.
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