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Abstract 

A challenge for evolutionary developmental (evo-devo) biology is to expand the breadth of research organisms used 
to investigate how animal diversity has evolved through changes in embryonic development. New experimental 
systems should couple a relevant phylogenetic position with available molecular tools and genomic resources. As 
a phylum of the sister group to chordates, echinoderms extensively contributed to our knowledge of embryonic 
patterning, organ development and cell-type evolution. Echinoderms display a variety of larval forms with diverse 
shapes, making them a suitable group to compare the evolution of embryonic developmental strategies. However, 
because of the laboratory accessibility and the already available techniques, most studies focus on sea urchins 
and sea stars mainly. As a comparative approach, the field would benefit from including information on other mem-
bers of this group, like the sea cucumbers (holothuroids), for which little is known on the molecular basis of their 
development. Here, we review the spawning and culture methods, the available morphological and molecular infor-
mation, and the current state of genomic and transcriptomic resources on sea cucumbers. With the goal of making 
this system accessible to the broader community, we discuss how sea cucumber embryos and larvae can be a power-
ful system to address the open questions in evo-devo, including understanding the origins of bilaterian structures.
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Introduction
Experimental biology with echinoderms has driven 
major discoveries in the past 100  years, significantly 
contributing to our understanding of cell, develop-
mental and regulatory biology [24, 41, 46, 72] and 
reviewed in [5, 14, 15, 32, 65, 67]. This group of ani-
mals includes sea urchins, sea stars, sea lilies, brittle 
stars and sea cucumbers and together with hemichor-
dates belong to ambulacraria, the sister group to 
chordates (Fig.  1). As with most echinoderms, sea 

cucumbers are benthic as adults but develop through 
free-swimming planktonic larvae. Due to their abun-
dance and since they mostly feed on sediment, sea 
cucumbers dramatically influence sea floor dynam-
ics at different depths, from the intertidal zone to the 
deep sea [105, 122], and therefore have a high ecologi-
cal impact. Some sea cucumber species are also con-
sidered luxury food in Asia and commercial interest 
is expanding to species from the Northeast Atlantic 
and the Mediterranean areas. The consequence of sea 
cucumbers’ increased economic value has led to their 
illegal and unsustainable fishing to fulfill the mar-
ket [20, 59], but also prompted many detailed stud-
ies for their rearing in animal farms. In fact, although 
most studies are performed on the adults (including 
ecotoxicological assessments, isolation of bioactive 
compounds from adult tissues, exploration of their 
regeneration capacities, reviewed in [23, 108, 144, 
145], there is significant growing interest in dissecting 

*Correspondence:
Margherita Perillo
mperillo@mbl.edu
Rossella Annunziata
rossella.annunziata@szn.it
1 Bell Center for Regenerative Biology and Tissue Engineering, Marine 
Biological Laboratory, 7 MBL St., Woods Hole, MA 02543, USA
2 Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13227-023-00220-0&domain=pdf


Page 2 of 21Perillo et al. EvoDevo            (2024) 15:3 

the factors that regulate and/or influence sea cucum-
bers’ embryonic and larval development, for both 
aquaculture and basic research purposes.

With the aim of stimulating research on the develop-
mental biology of sea cucumbers, we describe here how 
different species have been used to study embryology and 
highlight their potential to boost discoveries in the evo-
devo field. First, we provide a compilation of the main 
spawning methods established in the laboratory for dif-
ferent species and describe their life cycles depicting the 
main embryonic and larval anatomical features. We then 
focus on cell type specification looking at all available 
gene expression studies in embryos and larvae. Finally, 
we describe all the publicly available genomic and tran-
scriptomic resources and the established experimental 
techniques to explore sea cucumber cellular and develop-
mental biology.

Adult body anatomy and spawning methods
Echinoderms display a variety of body shapes, from the 
spherical sea urchins to the central disk with arms in 
sea stars and brittle stars, or the central stalk with arms 
found in the sea lilies (Fig. 1). While other animals in this 
family display a more overtly pentaradial symmetry, the 
body of adult holothurians (commonly called sea cucum-
bers) shows bilateral features, resembling an elongated 
cylinder with the mouth and the anus located at the 
opposite ends. At a first look, external pentamery seems 
limited to the arrangements of buccal tentacles; however, 
the organization of the internal organs (radial canals, 
radial nerve cords, muscles) follows a pentameral sym-
metry, with the exception of the gonad, the madreporite 
and the digestive tract [133].

Here we describe the most common features of the 
adult sea cucumbers, but a more detailed descrip-
tion of unique characteristics for each species can be 

found elsewhere [81, 95, 134, 140]. Adults are usu-
ally 10–30 cm long and the body wall can be dark or 
multicolored, smooth or covered in spines or warty 
protuberances. Animals in the genera Holothuria, 
Curcumaria and Stichopus move on the substrate with 
ventral podia like sea stars, others like Apodida and 
Molpadida, completely lack podia and are buried in 
the sediment. Some representatives of the deep-sea 
Elasipodida use their enlarged podia to walk and some 
species are able to swim [37, 95, 133, 141]. The mouth 
is located at one of the two extremities and it is sur-
rounded by tentacles that are part of the water-vas-
cular system, an organ composed of a series of canals 
with locomotor functions. The mouth opens into a 
muscular pharynx followed by the digestive system 
that is mainly formed by a long, looped intestine [74]. 
If threatened, sea cucumbers can expel their entire gut 
and enteric nervous system, which are then regener-
ated after a few weeks, making these animals an excel-
lent model to study intestine and nervous system 
regeneration [38, 115, 123, 124]. In addition, while the 
majority reproduce sexually, some holothurian species 
are capable of asexual reproduction through fission 
[45, 151].

Another unique feature of sea cucumbers among the 
echinoderms is that they possess a single gonad and 
a single gonopore instead of five, located anteriorly 
at the base of the tentacles [133]. Like other echino-
derms, gametes are released in the sea water [133]. 
Compared to the broad information on the reproduc-
tive biology of echinoids and asteroids, less is known 
in holothurians likely due to the difficulties of arti-
ficially spawning the adults. However, researchers 
found ways to spawn selected species by stressing the 
animals and triggering their gonads to mature their 
oocytes and spawn. The major spawning techniques 

Fig. 1  Deuterostomes phylogenetic tree. Phylogenetic relationship of deuterostomes with a focus on living echinoderms. Cartoons represent 
for each class the typical adult and planktonic larva body plans
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involve mechanical (dry and light stress), thermal and 
chemical treatments, and are summarized below.

Apostichopus japonicus, Stichopus horrens and Holo-
thuria scabra can be induced to spawn by dry stimula-
tion, meaning the animals are first kept out of seawater 
for 30 min and subsequently exposed to a jet of sea water 
[1, 73, 131]. Another spawning method combines light 
stress and temperature shock, when animals are left in 
the dark at temperatures that are ~ 5 °C higher than natu-
ral seawater [76]. Holothuria polii and Holothuria scabra 
can be induced to spawn with thermal shock by raising 
the sea water temperature by 3–5 degrees for 1–2 h, fol-
lowed by placing the animals at the optimal tempera-
ture [106, 127]. In contrast, a combination of thermal 
shock and thermal stimulation (consisting of gradually 
increasing the water temperature by 3 °C and after a day 
applying a thermal shock by quickly further raising the 
temperature by 3 °C and returning it back to the previous 
conditions) is effective in the Mediterranean Holothu-
ria tubulosa [126]. For some species, oocyte maturation 
can be achieved by chemical treatments, one example 
being gonad stimulation with radial nerve extracts [79]. 
Oocyte maturation and spawning in H. scabra and Holo-
thuria leucospilota is induced by injecting into the body 
wall (or by bathing their gonads inside) sea water with a 
recombinant relaxin-like gonad-stimulating peptide [36]. 

Another example is the protein thioredoxin that has been 
successfully used for oocyte maturation in H. tubulosa 
and H. scabra [86]. Finally, A. japonicus oocyte matura-
tion is induced by bathing the gonad in sea water con-
taining the neuropeptide cubifrin [164]. Besides these 
few examples, a hormone capable of inducing spawning 
for all the species is lacking. Therefore, when approach-
ing a new species, several methods need to be tested.

Embryonic development and metamorphosis
As with most benthic marine invertebrates, embryos 
of different species of holothurians can either develop 
through a dispersive planktonic larval stage or be 
brooded in adult bodies [116]. Free-living larvae can 
be planktotrophic or lecithotrophic (Fig.  2). Plankto-
trophic larvae are optically transparent, develop a fully 
functional digestive system to feed in the plankton, 
and progress through the stages of auricularia, dolio-
laria and pentactula. Lecithotrophic larvae have opaque 
non-feeding embryos that rely on maternal yolk reserve 
to grow through the larval stages of vitellaria and pen-
tactula. Through attempts at setting up new systems for 
aquaculture, the embryonic development of several hol-
othurian species has been described in detail. Here, we 
summarize the main developmental stages of species 
with planktotrophic larvae, such as Holothuria forskali, 

Fig. 2  Life cycle of sea cucumbers. Schematic showing the two types of reproductive strategies of Holothurians. Planktotrophic species have 
transparent embryos and develop through a feeding larva stage, while lecithotrophic species have yolky embryos that do not develop a complete 
digestive system and do not feed
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A. japonicus, S. horrens, H. tubulosa and of species with 
lecithotrophic larvae like Athyonidium chiliensis and 
Curcumaria frondosa. For detailed information, Table  1 
reports the geographic area, the temperature conditions 
and the developmental timing for the most studied spe-
cies together with literature references.

Developmental stages of planktotrophic species
In sea cucumbers fertilization and embryonic devel-
opment occur externally. Eggs are often spherical and 
transparent for planktotrophic species and are generally 
large, opaque and oval for lecithotrophic ones (Fig.  2). 
Spawning behaviors of holothurians are unique and help 
researchers identify males from females: when ready, 
males spawn first by moving close to the water surface 
and adopting a standing position, followed an hour later 
by females who lift their anterior side and release eggs 
[126], Fig. 3a). Ovaries are a branched, tubular structure, 
usually of a transparent pink or orange color (Fig.  3b). 
Prophase 1 arrested oocytes have a clear nucleus (Fig. 3c) 
that breaks down when the oocyte is mature and ready to 
be fertilized (Fig.  3d). After fertilization, uniform radial 
cleavages are observed (Fig.  3e and f ), followed by the 
blastula stage, a spherical embryo with a large blastocoel 
and the surface covered with cilia [126]. After hatching 
from the fertilization membrane, blastulae are the first 
swimming stage that subsequently elongate along the 
anterior–posterior axis to form the gastrula (Fig.  3g). 
Gastrulation proceeds through invagination of the arch-
enteron, followed by migration of mesenchymal cells 
from the tip of the archenteron, the future gut (Fig. 3h). 
By late gastrula stage, the mouth opens, and the site of 
archenteron invagination becomes the anus. The first 
neurons start to appear, some of which have been identi-
fied as serotonergic neurons located in the anterior ecto-
derm [110]. The gastrulae elongate to form the auricularia 
larva (named by Johannes Muller in 1840 based on the 
resemblance with human ears), the first planktotrophic 
larval stage. Auriculariae are transparent and bilaterally 
symmetric larvae (Fig.  3i). The fully formed digestive 
tract is divided into three regions: a muscular esopha-
gus, a stomach that is separated from the esophagus by 
the cardiac sphincter, and the intestine that leads to the 
anus (cartoon in Fig.  4). While swimming in the ocean, 
auricularia larvae grow in size and sense the external 
environment thanks to an extensive nervous system that 
interconnects with the looped ciliary bands (a portion of 
the ectoderm made of cells with a single cilium) to con-
trol feeding and locomotion [143]. Underneath the ciliary 
bands is a continuous strip of nerve fibers characterized 
by serotonergic neurons lined along the ventral and dor-
sal anterior ectoderm of the larva [27, 110] (Fig.  4). On 

the left of the digestive system, tubular tissues composed 
of the hydrocoel (Fig. 3i, arrow) and the left somatocoel 
appear; a smaller somatocoel is also formed on the right 
side [17] (Fig.  4). Auricularia from different species can 
be distinguished by the folding of the posterior ectoderm: 
the larvae belonging to the genus Holothuria have a tri-
angular protrusion, while the Stichopus larvae have a flat 
posterior end [78, 169]. Near the posterior end appears 
the primordium of a larval skeleton made of simple ossi-
cles (number varies based on the genus [134]) that are 
probably used to keep the larva balanced in the water 
column [117]. At this stage, the hyaline spheres appear 
in the larval arms [34] (Fig.  3j, arrow). Hyaline spheres 
are refractile structures unique to holothurians, which 
increase in size during feeding and represent a nutrient 
storage of neutral lipids that larvae use for metamorpho-
sis, since during this transformation phase they are not 
able to feed [120].

Developmental differences of holothuroids with other 
classes of echinoderms are evident also at metamor-
phosis. While in the other echinoderms metamorphosis 
starts with the formation of the juvenile rudiment on the 
left side of the stomach, in holothurians there is no rudi-
ment and metamorphosis consists in the reorganization 
of the larval structures into the juvenile body plan [125, 
169]. During metamorphosis larvae go through a transi-
tional barrel-shaped doliolaria stage that is smaller in size 
than the auricularia and does not feed (Fig.  3k). In the 
doliolaria larva, the ciliary band breaks to form five trans-
verse bands, the hyaline spheres increase in size (Fig. 3k, 
arrow), and the digestive tract is rearranged [138]. When 
the primary tentacles appear, larvae swim close to the 
substratum and drop to the bottom [126, 127]. At this 
point, the doliolaria transforms into pentactula, a benthic 
translucent larva that uses its five tentacles to attach to 
the substratum and, in some species, podia for locomo-
tion (Fig. 3l) [51, 78]. The definitive adult organs form at 
the pentactula stage, the last larval stage before growing 
into the newly settled juvenile (Fig.  3m) that resembles 
the adult body plan (Fig. 3n).

Lecithotrophic species development
Lecithotrophic larvae differ from planktotrophic lar-
vae as they skip the auricularia and doliolaria stages 
and do not require food to complete metamorphosis 
and become pentactulae (Fig.  2). Species in this group 
include for instance C. frondosa, A. chilensis and Psolus 
holothuroids [60, 62, 91, 102]. Eggs are large and yolky, 
embryos are opaque and internal structures are not vis-
ible. Bean-shaped gastrulae develop into barrel-shaped 
non-feeding vitellaria larvae [139] that lack hyaline 
spheres and some species do not form skeletal rods until 
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the pentactula stage [78]. The most visible structure in 
the vitellaria larva is the vestibule, an opening on the 
anterior end from where the five primary buccal tenta-
cles will eventually protrude in the pentactula stage [57, 
60, 62] (Fig. 2). Similar to the planktotrophic species, the 

lecithotrophic ones develop into a juvenile sea cucumber 
that resembles the adult animal (Fig. 2).

Some lecithotrophic holothurians reproduce by 
brooding of the embryos on the body of the adults, 
a reproduction strategy that has been observed in 

Fig. 3  Development and morphology of Holothuroidea, focus on H. tubulosa. a Spawning female (G, gonopore; E, eggs); b female gonads; c 
arrested oocyte, note the nucleus in the center; d mature oocyte, note that the nucleus is not visible anymore; e 2-cell stage; f 4-cell stage; g early 
gastrula and h late gastrula; i early and j late auricularia larvae; k fully developed doliolaria; l early pentactula larva. m Juvenile and n adult (b–i scale 
bar = 40 μm; j–m scale bar = 100 μm). H, hydropore; HS, hyaline spheres; T, tentacles; P, podia. a, m are modified from [126], b, c, d, e, f, g, h, i, j, k, I, n 
are original pictures taken in the Annunziata’s laboratory
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numerous species [74, 139]. Examples are the cucu-
mariid holothuroid Neocnus incubans [4], the deep-
sea Holothurian Oneirophanta mutabilis [63], and 
the Atlantic Ocean Psolus patagonicus [58]. The great 
variety of reproductive strategies in holothurians is 
highlighted by the recent discovery that brooding in 
Holothuria floridana is facultative since the exception-
ally sticky embryos can benefit from growing on the 
adult body wall but can also live in the plankton [132].

Cell type diversity and evolution in holothurians
Being the sister group of chordates, echinoderms have 
been extensively studied to understand the cellular and 
molecular regulation of development, allowing evolu-
tionary comparisons with other deuterostomes, includ-
ing vertebrates. The rich morphological diversity of their 
larvae makes echinoderms important research organisms 
to address how evolutionary novelties arise [14]. Indeed, 
the feeding larvae of echinoderms can be distinguished 

Fig. 4  Cartoons showing the morphology of gastrula, auricularia, doliolaria and pentactula larvae. In the gastrula, mesenchymal cells migrate 
from the archenteron (future gut) while it elongates anteriorly. The first neurons appear at this stage. Auricularia larvae are characterized 
by a functional digestive system, the presence of the hydrocoel, the left and right somatocoels and hyaline spheres. At this stage, the nervous 
system increases in complexity. Doliolaria is a transitional barrel-shaped larva that does not feed. It has larger hyaline spheres compared 
to the auricularia. Adult organs are formed in the pentactula, the last stage before the juvenile. In figure, a green continuous line indicates 
the neurons underneath the ciliary band. To make the auricularia cartoon clearer and show distribution of neurons we omitted the ciliary band 
that follows the same pattern
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morphologically into two main types, the pluteus-like 
larvae of echinoids and ophiuroids, and the auricularia-
like larvae of holothuroids and asteroids. Sea urchins and 
sea stars are often used in evo-devo studies addressing 
the evolution of organs such as the mineralized skeleton, 
the digestive tract and the nervous system of the larvae. 
Because of their larval morphology that shares traits 
with both sea urchins (e.g., the presence of a skeletogenic 
cell type [101] and sea star larvae (e.g., the overall exter-
nal shape of the auricularia stage), the sea cucumber is 
emerging as a valuable experimental system to assess 
cell type evolution. In addition, the holothurian devel-
opmental strategy of developing into a feeding auricu-
laria followed by a doliolaria is considered as ancestral 
for echinoderms [121, 125]. In this section, we provide 
an overview of the evo-devo discoveries in this emerging 
experimental system (in particular in A. japonicus, Par-
astichopus parvimensis, Parastichopus californicus, H. 
scabra and Holothuria atra) and the future potential of 
studies in holothurians to unravel the evolution of novel 
structures.

Antero‑posterior patterning
A distinctive trait of echinoderms is the shift in their life 
cycle from a larva with bilateral symmetry to an adult 
with a pentameric body plan. However, while the adults 
of most echinoderms do not show a clear antero-poste-
rior (AP) axis, sea cucumbers have an elongated body 
with the oral (anterior) and the anal (posterior) regions 
at opposite ends and the only overt sign of external pen-
tamery are the five buccal tentacles. On the other side, 
the internal organs (radial canals, radial nerve cords, 
muscles) of adult sea cucumbers are arranged follow-
ing a clear fivefold distribution with the exception of the 
gonad, the madreporite and the digestive tract.

Because of the torsion of the coelomic sacs during met-
amorphosis, the oral/aboral (OA) axis of the juvenile and 
adult does not correspond to the OA axis of the larvae 
in echinoids, asteroids and crinoids [121]. This torsion 
does not occur in holothuroids [74, 153] and the adult 
OA axis thus seems to correspond to the OA axis of the 
larva [138], although this is still a contentious issue. The 
absence of the torsion of the larval axis in holothuroids 
makes easier to follow the axis generation in the cylindri-
cal and seemingly bilateral body plan of the adults. Thus, 
while it is critical to study all the five groups of echino-
derms—including fossil records—to understand stem 
echinoderm features, holothuroids represent a valid 
group to study the molecular regulation and the evolu-
tion of adult axis emergence.

Hox genes are known for their crucial role in body 
patterning. One main unique feature of hox genes is 

that they are clustered in the genome and their spatial 
sequence of activation along the AP axis of the body 
follows their relative position along chromosomes, a 
property named spatial collinearity [71]. Despite the 
remarkable number of studies exploring hox genes, sev-
eral aspects of their regulatory mechanisms and the evo-
lution of their functions are still unclear [48, 94]. Because 
of the shift from bilateral to pentameric symmetry during 
their life cycles, echinoderms are exceptional systems to 
study hox gene evolution [28, 40, 53]. The analysis of hox 
genomic organization in Strongylocentrotus purpuratus 
[30] and more recently in Paracentrotus lividus [97] has 
revealed a reorganization of the hox cluster in echinoids, 
with translocation and inversion of the anterior hox class 
genes. These rearrangements were proposed as responsi-
ble for the bilateral symmetry break in echinoderms [40]. 
However, the finding of an intact hox gene cluster in the 
genome of the sea star Acanthaster planci [18] and more 
recently in the genome of the sea cucumber A. japonicus 
[173] disproved this hypothesis. On the other side, data 
on hox gene expression in sea urchins [7, 13], sea lilies 
[64] and sand dollars [152] showed that hox genes are 
sequentially expressed along the AP axis of the late larval 
somatocoels. Finally, a recent work on the sea star Pat-
iria miniata highlights the sequential expression of hox 
genes in the mesoderm and endoderm of the adult body 
[53]. Together, these data show that hox genes have a role 
in the AP patterning of structures present in the echino-
derm late larvae and adults while they are not involved, 
as a group, in the AP patterning of the embryonic stages 
[13].

A different scenario has been found in the sea cucum-
ber A. japonicus with hox genes expressed sequen-
tially also at embryonic stages. In particular, five hox 
genes (hox1, hox7, hox8, hox11/13a, and hox11/13b) 
are expressed in sequence along the gut of early lar-
val stages and eight hox genes (hox1, hox5, hox7, hox8, 
hox9/10, hox11/13a, hox11/13b, and hox11/13c) show 
a similar expression in doliolaria and pentactula stages 
(Fig.  5) [82]. This represents the first example of hox 
genes expressed as a group in early developmental stages 
in echinoderms, following a pattern similar to that found 
in other bilaterians and makes sea cucumbers a suitable 
experimental system to study the role of Hox genes clus-
ter in the formation of embryonic and adult structures in 
echinoderms.

Another group of genes involved in AP patterning of 
embryonic structures are the parahox genes. Like hox 
genes, parahox are clustered in the genome and function 
following spatial collinearity (genes at the 3ʹ of the clus-
ter are expressed anteriorly, genes at the 5ʹ are expressed 
posteriorly) and temporal collinearity (anterior genes are 
expressed earlier and posterior genes are expressed later) 
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[26]. While sea urchins seem to have lost this type of 
genomic organization [16], an intact parahox cluster has 
been found in asteroids [11, 18] and in the sea cucum-
ber A. japonicus [173]. In addition, temporal collinearity 
has been described for parahox gene expression during 
the development of both the sea star and the sea cucum-
ber [11, 173]. It is intriguing that two of the parahox 

genes (pdx and cdx) are expressed in a similar way show-
ing nested domains along the AP axis of the sea urchin 
and sea star larval guts, despite the different genomic 
organization in the sea urchin [16]. It will be interesting 
to explore the expression and function of parahox genes 
in the sea cucumber larva, to address the role of cluster 
organization in the regulation of their expression and the 

Fig. 5  Square plot summarizing all the gene expression data available for sea cucumber embryos and larvae. Colors represent the species 
where gene expression was investigated. Tph and Synaptotagmin expression has been inferred based on the localization of the proteins 
through immunohistochemistry
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conservation/divergence of their function in gut pattern-
ing in echinoderms [9, 10, 12].

Nervous system organization in holothurian larvae
The nervous system of echinoderm larvae consists of two 
main structures: the apical organ, that is hypothesized 
to act as the central nervous system of the larva, and the 
ciliary band neurons representing the peripheral nervous 
system [21]. The architecture of the echinoderm nervous 
system has been the subject of many studies carried out 
mainly in sea urchins and sea stars through immunohis-
tochemistry, in  situ hybridization and RNA-seq. Such 
studies have revealed the presence of conserved neu-
ronal subtypes, including photoreceptor cells, sensory 
neurons and neuropeptide producing cells, tracing their 
evolutionary history to non-chordate deuterostomes. 
Moreover, perturbation analyses led to the identification 
of the gene regulatory networks (GRNs) controlling neu-
ronal specification and differentiation, providing insights 
into the distinct differentiation steps taking place during 
development.

Studies based on immunohistochemical detection of the 
echinoderm specific pan-neuronal marker Synaptotagmin 
B in sea cucumbers showed that the first neurons appear 
at the late gastrula stage in the anterior neuroectoderm 
domain [22, 110, 178] (Fig. 4). These neurons arise from 
the thickened anterior neuroectodermal epithelium (a 

feature shared with echinoids) and are immunoreactive to 
serotonin, as also observed in most echinoderms at equiv-
alent developmental stages, supporting the proposed 
crucial role of serotonin in the apical organ of marine 
larvae in controlling swimming behavior and locomotion 
[39, 96]. In addition, soxB1 and soxC orthologues, that 
are essential for the specification of neuronal precursors 
in sea urchin and sea stars [8], are expressed in similar 
domains during sea cucumber development (Fig. 5) [154, 
155].

The holothurian nervous system complexity increases 
as development continues and neurons are fully differ-
entiated at the feeding auricularia stage. The auricularia 
nervous system consists of serotonergic ganglia located 
in the apical organ and neurons distributed along the 
ciliary band and in close proximity to the esophagus, 
intestine and anus [27, 110, 178]. Although the overall 
nervous system organization of holothurians is similar 
to echinoids and asteroids, several differences have been 
reported (Fig. 6). For instance, ciliary band neurons pro-
ject axons towards the aboral ectoderm in sea urchin and 
toward the oral ectoderm in sea star larvae [66], while 
holothurians lack this neuronal organization. The fact 
that the nervous system does not extend towards the 
ectoderm in holuthurians suggests that this might be a 
derived character that was not present in the ancestral 
echinoderm larvae, or that it was lost in sea cucumbers. 

Fig. 6  Comparison of the main cell types in the sea cucumber auricularia larva with the sea star bipinnaria and sea urchin pluteus larvae. The 
cartoons depict the main characterized cell types in echinoderm larvae. Sea cucumber larvae have unique features that distinguish them 
from other echinoderms, like the presence of hyaline spheres (for lipid storage), one or more short skeletal rods, or ossicles, that do not extend 
(number varies based on the genus), a single hydrocoel that appears on the left side of the stomach and an extensive neuronal network that do not 
show long axonal projections towards the internal structures
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Interestingly, the localization of serotonergic neurons 
also shows some differences within echinoderms (Fig. 6): 
in the sea star larvae these cells form scattered clusters 
placed laterally on the oral hood [33]; in the echinoid 
plutei serotonergic neurons are organized in bilateral 
patches in the apical organ [27] and in holothuroids, 
these neurons are located close to the ciliary band [110]. 
It would be interesting to understand if these morpholog-
ical differences also reflect distinct roles for this cell type 
in the different echinoderm larvae.

A great diversity of neuropeptides is detected while the 
auricularia feeds and grows, suggesting their involvement 
in feeding behavior and larval growth [178]. At this stage, 
neuropeptides with a role in feeding control in other 
organisms are present, such like orexin, insulin-like and 
SALFamide neuropeptides [178]. Less is known about 
the nervous system organization in the doliolaria and 
pentactula stages. At the auricularia stage, the nervous 
system undergoes a dramatic morphological transition 
as the ciliary bands break to transform into the five cili-
ary rings of doliolaria (cartoon in Fig. 4), a ring structure 
that is shared for instance with sea lily larvae [6]. This 
transformation has been described in Holothuria mexi-
cana and Stichopus californicus [84]. The doliolaria nerv-
ous system also contains dopaminergic and GABAergic 
neurons associated with sensory structures including cili-
ated cells [112]. These neurotransmitters are involved in 
the regulation of ciliary beating and swimming behavior 
in echinoderms and other marine invertebrates [39, 80, 
96], therefore an open question is whether the crosstalk 
of serotonergic, dopaminergic and GABAergic systems 
regulates these behaviors in holothurians. Moreover, the 
presence of GABA and dopamine in sensory organs at 
the pentactula stage suggests that the settlement and sub-
sequent metamorphosis of the larvae is under the con-
trol of dopaminergic and GABAergic systems, another 
feature potentially shared between marine larvae [39]. 
Finally, while the nervous system of the doliolaria and 
pentactula larvae continues to develop, the adult nerv-
ous system begins to form, and after metamorphosis it 
adopts the typical echinoderm organization into radial 
nerves and nerve rings [110].

Altogether, the nervous system of sea cucumber larvae 
shares similar developmental features with other echino-
derms until the auricularia stage (with some differences 
in the anatomical distribution of neurons). Future stud-
ies should address how this system responds to the envi-
ronmental stimuli faced by a planktotrophic larva in the 
water column. Furthermore, the dramatic rearrangement 
of the nervous system at the doliolaria stage raises impor-
tant questions. What cellular and molecular factors are 
involved in the rearrangement of the linear ciliary band 
neurons into rings? What is the evolutionary advantage 

of such a circular structure? How do lecithotrophic lar-
vae that do not feed and skip some larval stages sense 
their environment? We predict that comparisons of the 
nervous system of echinoderm larvae with different life 
strategies together with data from other early branched 
deuterostomes will help unraveling the origins of the 
bilaterian nervous system.

Mesodermal cell lineage: immune system, hydrocoel 
and primordial germ cells
Mesodermal precursors in echinoderms give rise to 
several larval cell types such as muscles, immune cells, 
skeleton and coeloms (Fig.  6). Orthologs of genes that 
in the sea star and sea urchin embryos are expressed by 
immune and blastocoelar cells (i.e., erg, ets1, gata4/5/6, 
foxn2/3, tbr, tgif and gata1/2/3) are expressed in analo-
gous domains of holothurian embryos (Fig.  5). Studies 
carried out in A. japonicus demonstrated that immune 
cells are actively involved in immune defense [165], as 
suggested by the increased expression of three immune-
related genes [mannan-binding C-type lectin (MBCL), 
lysozyme and serine proteinase inhibitor (SPI)] upon 
exposure to bacterial antigens. Interestingly, several 
of these immune genes were detected in early develop-
mental stages such as unfertilized egg and pre-hatched 
blastula, suggesting that either the immune system com-
ponents are maternally provided to ensure their availabil-
ity when needed, or that eggs and early zygotes use these 
molecules in other processes.

The hydrocoel (also named axohydrocoel, anterior 
coelom or hydro-vascular organ) is an organ unique of 
echinoderm larvae and it supports the establishment of 
the pentaradial symmetry during metamorphosis. It also 
gives rise to the adult water vascular system after meta-
morphosis, a system that enables circulation and loco-
motion [17, 74]. This organ is particularly enlarged in 
the sea star larva, where it originates from mesodermal 
precursors, forms two tubes on the sides of the gut and 
eventually elongates into a tubular-shaped organ vital for 
buoyancy in the water column [17, 118]. Holothurians 
diverge from other echinoderms since the hydrocoel first 
arises as a single pouch positioned on the left side of the 
digestive tract and eventually two somatocoels appear on 
the left and right sides of the stomach (arrow in Figs. 3i, 
4 and [154, 155]). The early morphogenetic changes that 
lead to this structure in sea cucumber larvae have not 
been defined yet. Does this single left structure origi-
nate from cells of the growing archenteron, or is it made 
by mesenchyme cells? Which cells give rise to the right 
somatocoel?

During the shift from a bilateral larva to a penta-
meric juvenile, the hydrocoel of sea cucumbers forms 
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five lobes (that will give rise to the adult water vascular 
system) and represents the first pentameric structure 
before metamorphosis. Lobe formation involves tissue 
remodeling and is independent from cell proliferation 
[154, 155]. Using laser ablation, it has been shown that 
these five lobes give rise to the water vascular system, 
suggesting it might function as a scaffold for pentameric 
body formation [154, 155]. What are the gene regulatory 
modules that lead to the change of symmetry? Is this dra-
matic shift dependent on some signals coming from the 
left side of the late larva? These findings, compared with 
similar studies in the other classes, might shed light on 
the origins of the molecular mechanisms at the base of 
pentameral symmetry emergence in echinoderms.

Another critical cell lineage for which the developmen-
tal origins in the sea cucumber remain poorly defined are 
the primordial germ cells (PGCs). Germ line and stem 
cell-like gene transcripts are enriched in the coelomic 
pouches of the sea urchin pluteus and in the posterior 
coelom of the sea star larva [119, 163]. In both animals, 
these cells enriched in PGCs marker gene transcripts 
will become part of the somatocoel and therefore will be 
transmitted to the adult through metamorphosis. The 
mechanisms of PGC specification in sea cucumbers are 
still unknown. The transcripts of the conserved germline 
marker gene nanos (encoding an RNA binding protein) 
are enriched in the hydrocoel of the sea cucumber A. 
japonicus [54]. On the other hand, the expression of the 
RNA helicase Vasa, another marker of stem and germ 
cells, is not restricted to the hydrocoel and it extends 
to most larval tissues [54, 170]. In the adults, vasa is 
expressed in both oogonia and spermatogonia, consistent 
with its conserved role in germ cell differentiation [170]. 
Functional studies with RNA interference showed that a 
conserved stem cell and germ-line marker, the P-element 
induced wimpy testis (piwi) gene, is involved in game-
togenesis, as its downregulation affects the expression of 
sex-related genes [148].

Since the expression of vasa and nanos alone does not 
clarify which are the precursors of PGCs and their locali-
zation, the expression of additional germ-line related 
genes must be explored in sea cucumbers. Moreover, 
the factors that are responsible to set aside the PGCs 
are unknown. PGCs in sea urchins are specified early in 
development, while in the sea stars PGCs are induced 
later by cell signaling interactions. Understanding how 
PGCs develop in sea cucumbers will be critical to define 
the ancestral mechanism of PGCs specification in 
echinoderms.

The evolution of a mineralized skeleton in echinoderm 
larvae
A striking difference among living echinoderm larvae is 
the unique presence of a mineralized skeleton in two spe-
cific lineages, the echinoids (sea urchins), and the ophi-
uroids (brittle stars), while sea star and sea cucumber 
larvae completely and partially lack a skeleton, respec-
tively (Fig. 6). This diversity provides the opportunity to 
address how novelties arise during animal evolution and 
undergo different evolutionary paths in animals belong-
ing to the same phylum.

Most of the available information on embryonic and 
larval skeletogenesis come from echinoids where the 
skeleton GRN has been reconstructed in detail [49, 113]. 
In sea urchins, skeletogenic cells migrate from the veg-
etal plate to the blastocoel during gastrulation. Through 
a combination of intrinsic mechanisms and signals origi-
nating from the surrounding ectoderm, skeletogenic 
cells fuse into a syncytium and form a ring-like structure 
around the gut [68, 103]. This scaffold further develops 
into skeletal rods, beneath the larval ciliated arms, pro-
viding support and protection to the developing larvae. 
Several genes that are essential for skeletogenesis have 
been identified, the most studied being the master reg-
ulator aristaless homeobox alx1 [50]. Interestingly, the 
larval skeletogenic GRN of echinoids and ophiuroids, 
while similar at many levels, underwent specific rewir-
ing events. Furthermore, based on the similarities in their 
GRNs, it has been proposed that echinoderm skeletogen-
esis and vertebrate vascularization are controlled by an 
ancestral tubulogenesis program established in their 
common ancestor [107].

Since sea cucumber auricularia larvae possess skeletal 
primordia that do not grow into long rods [101, 134], 
holothurians represent a unique case to study the evo-
lution of skeletogenesis. Similar to the sea urchin, sea 
cucumber skeletogenic cells derive from the mesoderm 
and are among the first cells to ingress during gastrula-
tion, before migrating to the dorsal sides of the embryo 
to form the cell clusters producing the skeleton [74]. The 
sea cucumber ortholog of alx1 has a conserved func-
tion in skeletogenesis [32, 101] (Fig. 5), as in sea urchins. 
The specification of sea cucumber mesodermal cells can 
be thus considered as an intermediate state between the 
sea urchin and the sea star and its regulatory landscape 
has been proposed to be that of the echinoderm ances-
tor [101]. Understanding how the skeletal ossicle forms is 
the first step to investigate its contribution to larval biol-
ogy. How did the skeleton evolve and what is its impact 
on the overall body morphology? The long arms of sea 
urchin and brittle star larvae are supported by long skel-
etal rods, while sea cucumbers that lack such long struc-
tures do not develop arms. What are the consequences 
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of these differences for larval shape, swimming behavior, 
orientation in the water column and feeding? What are 
the genetic and cellular mechanisms that drive skeleton 
and arms elongation? From a biophysics perspective, 
it would be interesting to investigate whether the ossi-
cle affects the swimming dynamics of the sea cucumber 
larvae and to compare these aspects to the swimming 
behavior of the late larvae of some asteroid species, like 
Pisaster ochraceus, that develop skeleton-less arms [56]. 
If the posterior ossicles of the auricularia do not have a 
clear supporting function, what is the primary function 
of a larval skeleton in echinoderms? In other words, 
does the skeleton influence the evolution of diverse lar-
val forms? With the help of genomic tools for functional 
experiments, we propose that further studies should take 
advantage of the sea cucumber’s unique characteristics 
of having an under-developed skeleton and investigate, 
together with other echinoderm larvae, whether a sup-
porting skeleton influences larval shapes and behavior.

Genomic‑transcriptomic information and cellular 
and molecular tools
Although the molecular regulation of sea cucumber 
development is understudied compared to other echi-
noderms, the majority of sequencing projects carried 
out in these animals represent a significant advantage 
for researchers willing to use these animals for evo-devo 
studies.

Species identification has been possible thanks to the 
complete mitochondrial genome sequencing that allows 
to resolve phylogenetic relationships. So far, 43 complete 
mitogenomes have been sequenced from 10 holothurian 
families, collected in several places worldwide (reported 
in Additional file  1: Table  S1). In addition, 24 genomes 
have been submitted to GeneBank, 10 of which lack a 
dedicated publication (Additional file  1: Table  S2). The 
first draft genome of a sea cucumber was performed by 
Jo and colleagues in 2017 [77], using the Illumina HiSeq 
2000 platform. This work provided a general overview of 
the genetic variation in the three major color variants of 
A. japonicus (green, red, and black), identifying million 
heterozygous single nucleotide polymorphisms in the 
assembled genome.

Recently, using PacBio HiFi long-reads and Hi-C 
sequencing approaches, Sun and collaborators reassem-
bled the A. japonicus genome with the aim to provide a 
chromosome-level assembly for this species [147]. More-
over, to investigate the phenotypic divergence and the 
population genetic structure of Russian and Chinese A. 
japonicus, the genomes of 210 individuals from the two 
geographic locations have been fully sequenced [61]. Fur-
thermore, phylogenetic and comparative genomic analy-
ses, using Illumina and PacBio platforms in A. japonicus 

[173] and Nanopore MinION in H. scabra [92], have 
led to the identification of marker genes associated with 
notochord and gill slits, suggesting that molecular traces 
of these features can be found in echinoderm cell types. 
BUSCO assessment of H. glaberrima genome allowed to 
fully annotate the genomic loci of the melanotransferrin 
(Mtf ) gene family, which has a potential role in the regen-
eration of sea cucumber intestine [104].

A recent study reported the assembly and annotation 
of the Stichopus monotuberculatus genome, providing a 
new genomic approach to study the structural diversity 
of holothurian genes involved in fucosylated chondroitin 
sulfates (FCS) biosynthetic pathways [180]. The authors 
found several expanded gene families, including key 
enzymes associated with FCS biosynthesis, such as fuco-
syltransferases and sulfotransferases. They also found 
FCS genes exclusive to S. monotuberculatus providing 
novel perspectives into the evolutionary adaptation of 
critical genes in holothurian FCS biosynthesis.

Another study reported the first high-quality, chromo-
some-level genome assembly of Holothuria leucospilota, 
an ecologically significant sea cucumber species with 
a prototypical Cuvierian organ (CO), that is a defensive 
organ with bioadhesive properties [35] The H. leucospi-
lota genome reveals characteristic long-repeat signatures 
in CO-specific proteins, analogous to fibrous proteins of 
disparate organisms, including spider spidroin and silk-
worm fibroin, offering new insights into the molecular 
features and evolution of this unique defensive organ. 
Likewise, integrated genome-wide association study 
(GWAS) and the analysis of the distribution of character-
istic sex-specific SNPs have clarified sex determination 
mechanisms and identified sex-linked markers, showing 
that multiple sex-associated loci are located on several 
chromosomes in A. japonicus [158].

Several genomic studies have analyzed the ability of 
sea cucumbers to adapt to extreme environmental con-
ditions, such as deep-sea, coldness and high pressure 
hadal zones. For instance, the sequencing of the hadal sea 
cucumber Paelopatides sp. Yap genome helped to iden-
tify the potential adaptation mechanisms of these ani-
mals to the deep-sea habitat. The authors found in this 
species an expansion and a positive selection for genes 
such as translation initiation factors, ribosomal pro-
teins, and genes associated with DNA repair, suggest-
ing that increased protein synthesis inhibition coupled 
with DNA protection are necessary for deep-sea species 
adaptation [135]. The sequencing of C. heheva genome, 
another deep-sea species, showed an expansion of the 
aerolysin-like protein family (pore-forming proteins 
mostly studied in bacteria and able to damage mem-
branes of target cells generating transmembrane pores) 
and a positive selection of several hypoxia-related genes, 
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suggesting an important contribution of these genes to 
hypoxic environment adaptation [172]. These findings 
in the sea cucumber genome represent important steps 
towards a better understanding of how deep-sea ani-
mals live. For instance, which cell types express the genes 
involved in deep-sea adaptation in species that live at dif-
ferent depths? Are the same mechanisms of adaptation 
to hypoxic environments used in both the adult and the 
embryo?

Finally, the raw genome data of H. tubulosa have been 
recently released, representing a valuable resource for 
future comparative genomic investigations within the 
holothurian group [83].

Genome sequencing has been also extremely useful to 
study epigenetic modifications, in particular A. japonicus 
was used to study DNA methylation and acetylation in 
response to different experimental conditions (Additional 
file 1: Table S2). For example, high-resolution methylome 
analyses by whole-genome bisulfite sequencing (WGBS) 
showed variations in DNA methylation in the intestine 
during environmental-induced aestivation [168]. Varia-
tions of methylation were also found on healthy body wall 
and on skin ulceration syndrome infected body wall in A. 
japonicus [146]. Finally, ChIP-seq analysis in A. japonicus 
showed that histone lysine acetylation is a central chro-
matin modification for gene expression regulation during 
heat stress response [161].

Several transcriptomic projects are available for A. 
japonicus and H. scabra, covering the whole embryonic 
development up to the larval and juvenile stages (Addi-
tional file  1: Table  S3) and nicely complementing the 
genomic resources from these species. In particular, tran-
scriptomes are available for blastula, gastrula, auricularia, 
pentactula and juvenile stages and have revealed stage-
specific transcription factors [25, 47, 114, 156]. RNA 
sequencing across 16 A. japonicus developmental time 
points (from fertilized egg to juvenile stage) revealed 
genes involved in early metamorphosis and differentially 
expressed between late auricularia and doliolaria larvae 
[88, 89]. Additionally, transcriptional analyses explored 
the molecular mechanisms that underlie the initial dif-
ferentiation and formation of papillae in A. japonicus 
by comparing the gene transcriptional profiles of pen-
tactulae (the stage before papillae arise) to those of juve-
niles (after papillae formation) [171]. Other sequencing 
analysis have highlighted the genetic basis of saponin 
biosynthesis, aestivation and regeneration processes. In 
particular, the transcription factors Klf2 and Egr1 were 
identified as putative key regulators during A. japonicus 
aestivation (a physiological state characterized by pro-
longed inactivity, feeding cessation, intestine degenera-
tion and metabolic rate depression, in response to high 
temperatures) and diverse signaling pathways including 

Wnt, Hippo and FGF were found to be involved in intes-
tine regeneration [88, 89].

Several biological aspects of adult holothurians have 
been investigated using RNAseq-based approaches. A 
series of studies performed differential gene expres-
sion analysis of A. japonicus subjected to environmen-
tal changes such as different light stimuli [90], different 
salinity conditions [173], and copper exposure [87]. 
Because sea cucumbers show the remarkable ability of 
quickly replacing injured organs, transcriptomes have 
been generated on H. glaberrima, E. fraudatrix, and A. 
japonicus during gut evisceration and regeneration [44, 
115, 123, 124, 136, 144, 145], radial organ complex regen-
eration [109], and muscle regeneration [111]. Other stud-
ies explored gene expression during aestivation, a process 
that so far has been exclusively observed in sea sponges 
and sea cucumbers [159, 174–176]. Moreover, transcrip-
tomes exploring the response of the immune system 
have been generated in different conditions, such as air 
exposure stress [150], continuous heat stress [162], skin 
ulceration [167], microplastic [105] and nanoplastic tox-
icity [177], miRNA regulation in coelomocytes during 
host–pathogen interaction [179] and lipopolysaccharide 
treatment [109], knock-down of ajpacifastin-like gene 
[93], and exposure to Vibrio splendidus [130]. All these 
studies found novel and known genes involved in evis-
ceration/regeneration-related processes, wound healing, 
cell proliferation, differentiation, morphological plastic-
ity, cell survival, stress response, immune challenge, and 
neoplastic transformation. Among those, cytoskeletal 
genes, such as actins, and developmental genes, such as 
wnt, orpin, metalloproteinase, and hox genes, have shown 
interesting expression profiles during regeneration; Wnt, 
TGF-β and endocytosis pathways have been found asso-
ciated with cell proliferation and differentiation after 
evisceration; FoxO signaling pathway has shown playing 
important roles in immunoregulation.

Recently, a single cell RNA sequencing (scRNA-
seq) project aimed to investigate nervous system cell 
type diversity in the adult A. japonicus (BioProject 
PRJNA883642) has been submitted to NCBI by the 
Ocean University of China. Another single cell tran-
scriptome project in the same species has been recently 
published to clarify the molecular nature of different 
color morphologies [160]. The authors revealed the exist-
ence of two cell groups responsible for sea cucumber 
body color: melanocytes and quinocytes, more abun-
dant in purple than in green sea cucumbers. In addition, 
important genes related to pigmentation were identified, 
expanding our knowledge on the molecular mechanisms 
regulating distinct pigment formation in echinoderms.

On top of multi-omics approaches, cellular and molec-
ular tools have been set up by different research groups 
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to make sea cucumbers biology experimentally accessible 
(summarized with references in Table  2). Among these, 
in  situ hybridization and immunohistochemistry proto-
cols have been successfully used to study transcripts and 
protein cellular localization and functional studies have 
been performed using knock-down approaches, such as 
RNAi on adults and morpholino antisense oligonucleo-
tides (MASOs) microinjected in zygotes. Lastly, laser 
ablation has been proved to be a useful tool in holothuri-
ans to study tissue regeneration.

Conclusions and future challenges
As members of Bilateria, the group of animals with 
bilateral body symmetry, echinoderms have the unique 
feature of switching from the bilateral symmetry of the 
embryonic and larval phases (the bipinnaria of asteroids, 
the pluteus of sea urchins and ophiuroids and the auric-
ularia of holothuroids) (Figs.  1 and 6), to a pentaradial 
symmetry in the adult body plan (Fig. 1). Because of their 
rich morphological variation, echinoderm larvae are a 

powerful tool to investigate the origins of animal diversity 
and to understand the mechanisms of body patterning.

Although their development is still underexplored at 
the molecular level, sea cucumbers have all the features 
that make them valuable experimental systems, such as 
ease of collection from the field, inexpensive rearing of 
adults in laboratories, optically transparent embryos and 
larvae, abundance of eggs that develop into synchronous 
cultures of embryos and larvae, and available genomes 
and transcriptomes. Furthermore, their larval anatomy 
resembles the tornaria larva of hemichordates [149], sis-
ter group of echinoderms in the ambulacrarian clade, and 
it is for this reason considered the ancestral larval type 
of echinoderms. Another remarkable trait of sea cucum-
bers is that larvae store lipids in special structures called 
hyaline spheres and they use them as source of energy 
during metamorphosis. Several questions related to these 
peculiar structures are to be addressed: are the hyaline 
spheres related to our adipocytes? How conserved are the 

Table 2  Established techniques that have been used for cellular, developmental and regenerative biology studies on embryo and 
adult sea cucumbers

Techniques Species References

Immunohisto-chemistry Adults Holothuria mexicana
Holothuria glaberrima
Stichopus badionotus 
Cucumaria frondosa
Apostichopus japonicus
Holothuria forskali
Leptosynapta clarki
Eupentacta fraudatrix
Holothuria scabra
Holothuria arguinensis
Pearsonothuria graeffei
Bohadschia subrubra 
Holothuria polii

[55]
[55]
[55]
[70]
[75]
[43]
[69]
[99]
[2]
[98]
[52]
[52]
[31]

Embryos &
 larvae

Apostichopus japonicus
Holothuria atra
Parastichopus californicus 

[110]
[22]
[27]

In situ hybridization Adults Holothuria glaberrima [100]

Embryos &
 larvae

Apostichopus japonicus
Parastichopus parvimensis

[137]
[101]

Tissue explants Adults Apostichopus japonicus ovary & respiratory 
tree
Holothuria glaberrima intestinal cultures
Holothuria glaberrima radial nerve cord 
cultures

[157]
[19]
[42]

Gene expression perturbation Adults Apostichopus japonicus
RNA interference (RNAi)
Holothuria glaberrima
Dicer-substrate small interfering RNA 
(DsiRNA)

[148]
[3]

Embryos &
 larvae

Parastichopus parvimensis 
Morpholino antisense oligonucleotide 
(MASO) injection

[101]

Laser ablation Embryos &
 larvae

Apostichopus japonicus [155]
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pathways for lipid metabolism in an early branched deu-
terostome compared to vertebrates?

While other echinoderm larvae undergo a dramatic 
metamorphosis where the major larval body axes are lost, 
sea cucumber larvae seem to conserve their embryonic 
body axis during the transition to adults, a matter still 
under debate. This makes sea cucumbers useful experi-
mental tools to study the evolution of axis formation and 
potentially to unravel the origins of deuterostome ances-
tral developmental mode.

Although so far fewer genetic tools have been devel-
oped for sea cucumbers compared to sea stars and 
sea urchins (discussed in this review), investing in the 
use of sea cucumbers as experimental systems will be 
advantageous for the scientific community interested 
in comparative studies. There is much to be explored 
on several aspects of sea cucumber larval biology and 
ecology and many are the open questions that could 
be addressed by studying these systems in comparison 
with members of the other echinoderm classes. How 
does the unique nervous system of the doliolaria larva 
develop and function? To what extent are these larvae 
capable of perceiving environmental signals such as 
light and food availability and how do they respond and 
possibly adapt to such cues? Considering the extraordi-
nary regenerative potential of the sea cucumber adults 
that is the subject of several molecular studies, what are 
the regenerative mechanisms employed by sea cucum-
ber larvae? To answer these questions, we need to com-
bine molecular and genomic techniques in a few species 
that are easily accessible by researchers worldwide.

The information summarized in Fig.  5 and Addi-
tional file  1: Table  S3 clearly shows that most of the 
data related to developmental gene expression patterns 
derive from studies performed on mainly two species 
(A. japonicus and P. parvimensis), and most embry-
onic and larval transcriptomes have been generated in 
only one species (A. japonicus). Expanding the array of 
species used in evo-devo studies is crucial to uncover 
the ancestral traits of this group of animals. Besides 
A. japonicus, broadly used in Asia, another good can-
didate species to establish sea cucumbers as evo-devo 
systems can be H. tubulosa, a planktotrophic species 
highly abundant in the Mediterranean Sea that has 
clear larvae and reproducible spawning methods [126].

Finally, a future challenge to establish sea cucum-
bers as systems for evo-devo is that the cellular and 
molecular biology tools discussed in this review should 
be complemented by the setup of standardized meth-
ods for spawning and for oocyte maturation (perhaps 
isolating a universal peptide to mature oocytes like 
the one used for the sea stars), and the possibility to 

overcome seasonality by breeding animals in labora-
tory-controlled conditions.
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