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Abstract

animals.

and non-neural cell types in later evolving animals.

Background: Nervous systems are thought to be important to the evolutionary success and diversification of
metazoans, yet little is known about the origin of simple nervous systems at the base of the animal tree. Recent
data suggest that ctenophores, a group of macroscopic pelagic marine invertebrates, are the most ancient group
of animals that possess a definitive nervous system consisting of a distributed nerve net and an apical statocyst.
This study reports on details of the evolution of the neural cell type specifying transcription factor family of LIM
homeobox containing genes (Lhx), which have highly conserved functions in neural specification in bilaterian

Results: Using next generation sequencing, the first draft of the genome of the ctenophore Mnemiopsis leidyi has
been generated. The Lhx genes in all animals are represented by seven subfamilies (Lhx1/5, Lhx3/4, Lmx, Islet, Lhx2/
9, Lhx6/8, and LMO) of which four were found to be represented in the ctenophore lineage (Lhx1/5, Lhx3/4, Lmx,
and Islet). Interestingly, the ctenophore Lhx gene complement is more similar to the sponge complement (sponges
do not possess neurons) than to either the cnidarian-bilaterian or placozoan Lhx complements. Using whole
mount in situ hybridization, the Lhx gene expression patterns were examined and found to be expressed around
the blastopore and in cells that give rise to the apical organ and putative neural sensory cells.

Conclusion: This research gives us a first look at neural cell type specification in the ctenophore M. leidyi. Within
M. leidyi, Lhx genes are expressed in overlapping domains within proposed neural cellular and sensory cell
territories. These data suggest that Lhx genes likely played a conserved role in the patterning of sensory cells in
the ancestor of sponges and ctenophores, and may provide a link to the expression of Lhx orthologs in sponge
larval photoreceptive cells. Lhx genes were later co-opted into patterning more diversified complements of neural

Background

LIM Homeobox (Lhx) genes were first isolated from the
nematode, Caenorhabditis elegans, where the Lhx
homolog, MEC-3, was shown to be required for the
proper differentiation of touch receptor neurons [1].
Subsequent studies in C. elegans and rat isolated LIN-11
and Islet], respectively, which together with MEC-3 are
the founding members for the LIM family acronym
[2,3]. Phylogenetically, Lhx genes were originally subdi-
vided into six subfamilies, Lhx1/5, Lhx2/9, Lhx3/4,
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Lhx6/8, Islet, and Lmx [4]. Lhx proteins are composed
of tandem zinc-finger LIM domains at the N-terminus,
which function by binding specific co-factors that med-
iate their function, while the helix-turn-helix homeodo-
main (HD) interacts with DNA in a sequence-specific
manner [5]. While LIM domains and homeodomains
are found in non-metazoan eukaryotes, the specific
combination of LIM-LIM-HD is only found in animals
[6].

Lhx genes have roles in cell specification, tissue differ-
entiation and neural patterning. In both vertebrate and
invertebrate taxa, Lhx genes have conserved roles in the
patterning of sensory neurons, interneurons, and motor
neurons (reviewed in [4,7]). It has been suggested that
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cells expressing different combinations of Lhx genes
form a “LIM code” that is important in specifying cell
types within a tissue or organ [8], and motor neuron
axon pathway finding [5].

The C. elegans Lhx1/5 genes, LIN-11 and MEC-3, are
required for the terminal differentiation of non-overlap-
ping sensory, motor neurons and interneurons [1,9,10].
Mouse null mutants of the LhxI family die during mid-
gastrulation due to massive head defects [11], while the
Lhx5 homologue is expressed in the anterior neural
plate and parts of the developing diencephalon [12]. At
later stages, the expression pattern of Lhx5 extends to
parts of the midbrain, hindbrain and spinal cord [13]. A
study (reviewed in [5] on the LIM code for axon path
finding in motor neuron subtypes revealed that depend-
ing on the combination of Lhx genes expressed in
motor neurons, different motor neuron subtypes are
produced. Lhx1 when expressed with Islet2 produces
motor neurons that project into ventral limb bud mus-
culature, while Islet1, Islet2, and Lhx3 expressing motor
neurons project into the medial motor column, and dif-
ferent motor neurons are produced when Is/I and Is/2
are expressed either together or separately. In addition
to neural patterning, Lhx1 is also known for its role in
blastoporal organizer activity during gastrulation in
Xenopus, ascidians, amphioxus, and cnidarians [14] as
well as endoderm specification in ascidians [15],
amphioxus [16] and mice [17].

The Lhx2/9 group, also known as the apterous group
(named after the Drosophila gene), has diverse roles in
patterning the nervous system, wing development, mus-
cle development, axon guidance, and neurotransmitter
choice [18,19]. The C. elegans Lhx2/9 homologue ttx-3
is expressed in a pair of interneurons and anterior mus-
cle cells that project into the nerve ring [20]. The verte-
brate Lhx2/9 homologues are expressed in the nerve
cords, eyes, olfactory organs and limbs [4].

The Lhx3/4 subgroup expression patterns were found
to be restricted to post mitotic neurons in Drosophila.
The function of Lhx3/4 genes in Drosophila is in axon
guidance of specific motor neurons when combined
with the expression of Lhx gene islet [21]. In the devel-
oping chick embryo, Lhx3/4 has been shown to specify
the formation of interneurons in the presence of one of
its binding partners Ldb1 (LIM domain-binding protein
1), while additional expression within the same cells
with the Lhx gene Isletl specifies the formation of
motor neurons [22], which show that Lhx genes func-
tion in a combinatorial fashion called the ‘LIM code’ to
specify specific neural identities [4,8,23].

The Drosophila Lhx6/8 homologue arrowhead is
expressed in the nervous system and has yet to be func-
tionally analyzed [24]. The C. elegans homologue is
expressed in sensory, motor and interneurons in the
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brain [25]. The vertebrate members of this subfamily are
expressed in the forebrain and first branchial arch [26].

The islet gene subfamily is expressed in mesodermal
derived cells and in subsets of motor and interneurons
of the central nervous system (CNS) of Drosophila [27].
In vertebrates, Islet paralogs are expressed in many tis-
sues, including heart, liver, pancreas, brain, and eyes
[28-30].

The C. elegans homologue to the group Lmx is
expressed in post-mitotic neurons controlling axon gui-
dance and the synthesis of the neurotransmitter GABA.
It is also expressed in endothelial cells of the uterus and
in the excretory system [31]. The vertebrate chick
homologue Lmx-1b is involved in dorsal ventral pattern-
ing of limbs and in patterning the otic vesicle [32].

Novel neural cell types arose at some point during the
evolution of metazoans, as nervous systems evolved and
diversified throughout the bilaterian radiation. Nested
between single-celled choanoflagellate-like ancestors
(Figure 1) and the Bilaterian radiation of metazoans are
four groups: Porifera, Ctenophora, Cnidaria, and Placo-
zoa. While ctenophores and cnidarians have distinct
nerve cells and other neural structures, poriferans and
placozoans do not [33,34]. Interestingly, the genomes of
the sponge, Amphimedon queenslandica, and the pla-
cozoan, Trichoplax adhaerens, have revealed the pre-
sence of most of the genes involved in forming the
post-synaptic scaffold, as well as neurotransmitter bio-
synthesis [33-35]. Even choanoflagellates, the closest
extant sister group of the Metazoa, possess genes for
many of the post-synaptic scaffolding proteins, showing
that many of the components to build a neuron likely
predated its evolution [36]. Thus, it is of some interest
to determine how the molecular components were
assembled in early branching metazoans to form func-
tionally integrated nervous systems.

Cnidarians are now well accepted to be the sister
group to all bilaterians [37-41]. The anthozoan

Choanozoa ¢
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Ctenophora 4 Nervous System
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Nervous System
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Figure 1 Phylogenetic relationships of ‘basal metazoa’.
Phylogenetic relationships of early branching metazoan taxa, based

on data from recent studies [45-47]. Non-definitive nervous systems
refer to the lack of morphological and physiological data to confirm
their existence.
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cnidarian, Nematostella vectensis, possesses members of
all six Lhx subfamilies, as does the placozoan, Tricho-
plax, suggesting that complete diversification already
occurred in the ParaHoxozoan common ancestor [6].
The sponge, Amphimedon, only has members of three
subfamilies: Lhx1/5, Lhx3/4, and Islet. Amphimedon
Lhx1/5 and Lhx3/4 were found to be expressed within
putative photosensory cells surrounding larval pigment
cells, while Islet is ubiquitously expressed [6]. In Tricho-
plax, all Lhx genes were shown to be expressed in adult
animals through the use of RT-PCR; however, spatio-
temporal patterns were not examined [6]. Expression
patterns of NvLhx6/8, NvLhx1/5, and NvLmx in Nema-
tostella overlap with previously described neural terri-
tories [6]. Interestingly, while the Amphimedon and
Nematostella Lhx genes are all on separate genomic
scaffolds, a single Trichoplax scaffold contains a cluster
of Lmx, Lhx3/4, Lhx6/8, a LIM-only gene, and Lhx2/9
further downstream, suggesting that the Lhx family
arose via tandem duplications [6].

Ctenophores occupy a highly debated phylogenetic
position, once grouped with cnidarians forming the
group Coelenterata [42,43]. Ctenophores are now
thought to have diverged prior to cnidarians and may
actually be the earliest extant metazoan phyla that pos-
sess definitive neurons [37,38]. Comparisons of gene
complements between the four basal metazoans will be
helpful in giving support for one or more of the various
competing phylogenetic hypotheses (reviewed in [44]).
Recent gene content studies [45-47] give consistent sup-
port for Porifera and Ctenophora diverging prior to the
ParaHoxozoa (Placozoa, Cnidaria, Bilateria), however
identifying the earliest branching taxon remains
problematic.

For this study the genomic complement of Lhx genes
was examined in the lobate ctenophore M. leidyi. Using
the recently sequenced genome of M. leidyi, four Lhx
genes were predicted by preliminary searches [45]. We
further analyzed these genes by obtaining their full
sequences through RACE PCR. Using whole mount in
situ hybridization, we examined the expression patterns
of the four Lhx genes throughout development. These
genes are expressed in discreet sensory cell types, and in
an overlapping fashion within the apical sensory organ,
a highly innervated nervous structure.

Results

Gene identification, structure and genomic organization
Partial sequence information from the four M. leidyi
Lhx homeobox genes previously reported [45] were used
to design non-degenerate primers. Full-length cDNA
transcripts for all four Mnemiopsis Lhx genes were iso-
lated by 5" and 3" RACE RT-PCR from mixed-stage
embryonic ¢cDNA. The four sequences have been

Page 3 of 11

submitted to GenBank: MILhx1/5 [Genbank: JF912807],
MILhx3/4 [Genbank: JF912808], MlIslet [Genbank:
JF912806], and MILmx [Genbank: JF912809]. All of the
Lhx genes isolated contained two tandem N-terminal
LIM domains followed by a homeodomain sequence as
identified by the SMART domain prediction [48] (Figure
2).

The genomic organization of the Mnemiopsis Lhx
genes showed no apparent linkage groups and they were
found to be located on separate genomic scaffolds. The
size of the scaffolds is as follows: MILhx1/5 is found on
scaffold ML1325 with a length of 127,187 bases. M{[Lmx
is found on scaffold ML0569 with a length of 734,417
bases. Mllslet is found on scaffold ML0530 with a length
of 126,527 bases. MILhx3/4 is found on scaffold
MLO0681 with a length of 490,590 bases.

In bilaterians, there are two conserved introns in the
Lmx genes, within the homeodomain sequence. Both
conserved intronic breaks are present in Trichoplax [6]
a non-bilaterian species; however, the first intron posi-
tion is slightly translocated in Mnemiopsis (Figure 3),
and the second intron, while conserved in many other
taxa, is not conserved in Nematostella. The homeobox
sequences of Lhx1/5, Lhx3/4, and Islet were also sur-
veyed for conserved intron positions (Additional file 1).
Although introns were found within the homeodomain
sequences of Lhx1/5, Lhx3/4, and Islet, they did not
appear to have any conservation with any of the other
taxa sampled.

Phylogenetic relationships

Phylogenetic analyses of the isolated ctenophore Lim
homeodomain-containing genes were performed using
sequence data from the Lhx complement of the cnidar-
ian N. vectensis [49], the placozoan Trichoplax adherens

MILhx1/5 [ ow |

MILhx3/4

]

MILmx _-.-_-—

1 100 200
F t 1 aa

Millslet

Figure 2 Domain structure of Mnemiopsis Lhx genes. The
domain structure of the Mnemiopsis leidyi Lhx genomic
complement was predicted by using the SMART database [48].
Yellow boxes indicate the tandem LIM zinc finger binding domains,
pink boxes indicate the homeodomain sequence.
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KRPRTILTTQQRR(-) ----AFKASFEVSSKPCRK(0)VRETLAAETGLSVRVVQVWFQNQRAK (0)MKK
KRPRTILTSQQRK (-)----QFKASFDQSPKPCRK (0)VREALAKDTGLSVRVVQVWFQNQRAK (0)MKK
KRPRTILNTQQRR(-)----AFKASFEVSPKPCRK(0)VRENLAKDTGLSLRIVQVWFQNQRAK (0) VKK
: KRPRTILTSQQRK(-)----VFKSAFEISSKPCRK(0)VREELSRETGLSVRVVQVWFQNQRAK (-)VQK
: KRQRTVLNPQQRK (-)----LFHDSFEKSSKPGKE (0)VRDELSRKTGLSARVVQVWFQNQRAK (0) LKK
: KRPRTVLSSVQRK (0) EHLSVFKEAFDRTPRPCRK (-) EREKLSSQTGLSVRVVQVWFQNQRAK (0) VKK

Nematostella vectensis; Ta,Trichoplax adhaerens.

Figure 3 Alignment of Lmx homeodomain sequence. Alignment of the Lmx genes homeodomain region, showing the conservation of two
intervening introns labeled (0). Mnemiopsis's first intron position is 3’ to the highly conserved position in other taxa. The second intron position
is shared with other taxa, but not with the anthozoan Nematostella. Dm,Drosophila Melanogaster, Hs,Homo sapiens; MI, Mnemiopsis leidyi; Nv,

[6], the sponge. A. queenslandica [50], and from the
published genomes of Homo sapiens, Danio rerio, Gallus
gallus and Drosophila melanogaster. Maximum likeli-
hood and Bayesian analysis were performed individually
on the aligned tandem LIM domains and the homeodo-
main (Figure 4). Similar to analyses using only the
homeodomains [45], our analyses show relatively high
support for the four Mnemiopsis Lhx genes within the
Lhx1/5, Lhx3/4, Islet, and Lmx subclasses. The sponge
A. queenslandica lacks an Lmx gene homologue, but
due to low branching support between subclasses, we
cannot determine whether the demosponge lineage lost
the Lmx gene, or if this lineage diverged before Lmx
arose. These predictions need to be tested with other
sponge genomes.

Included in this phylogenetic study are three LIM
domain-containing gene families that lack a homeodo-
main and are the most closely related to Lhx genes,
which were used for outgrouping: nuclear LIM only
(LMO), Actin binding LIM (Ablim), and Paxilin. The
most closely related family to the Lhx genes are found
within the nuclear LIM only (LMO) gene family [7].
Both M. leidyi and A. queenslandica do not possess
genes within this family, and neither do the unicellular
non-metazoans Monosiga brevicollis and Capsaspora
owczarzaki surveyed in this study. The absence of
LMO genes in these taxa in addition to the current
genomic and phylogenetic data available and their
internal branching within the Lhx hierarchy in our
phylogenetic tree (although with low support values)
suggests that these genes are likely a subfamily of Lhx
genes and arose through a gene duplication shortly
thereafter losing their homeodomains after the split of
ctenophores and sponges and before the rise of
ParaHoxozoa.

The four M. leidyi Lhx genes correspond closely to
the A. queenslandica complement in gene content. In
addition we also found that there are no homologues to
the LIM-domain binding factors (Ldb) in the currently
available sponge and ctenophore genomes, although this
gene is present in all other animals. These data suggest
that the ancestor of sponges and ctenophores contained

three or four of the seven subclasses of Lhx genes, with
Parahoxozoans acquiring the two closely related sub-
classes (Lhx 2/9, Lhx 6/8), Ldb factors, and the LMO
gene family (derived from an already existing Lhx gene
family) after their divergence from sponges and cteno-
phores (Table 1).

Developmental expression of M. leidyi Lhx genes
To determine potential roles for Lhx genes in M. leidyi
development, we looked at the spatial and temporal
expression of all four Lhx genes through whole mount
in situ hybridization. Mllslet is the earliest gene
detected, at gastrulation or approximately four hours
post-fertilization (hpf), in two to three rows of cells at
the aboral pole along the sagittal axis (Figure 5A). This
expression continues through development (Figure 5B-
E), eventually forming the polar fields, as well as the
most sagittal regions of the apical organ floor. The
other Lhx genes are detected just after gastrulation, at
approximately 5 hpf. MILhx1/5 is expressed in a subset
of mesodermal micromeres born at the oral pole (site of
gastrulation) that enter the blastocoel, as well as in cells
surrounding the blastopore (Figure 5I-J). These meso-
dermal oral micromere derivatives proliferate and
migrate to areas underlying the comb plates (Figure 5K-
N) to form the presumptive photocytes, or light-produ-
cing cells. The blastoporal expression continues through
development, with expression later confined to indivi-
dual cells of the pharynx. At the cydippid stage, there is
an additional expression domain in the floor of the api-
cal organ (Figure 50-P). These four groups of cells pos-
sibly correspond to the putative photoreceptor cells [51].
MILhx3/4 is expressed in cells at the aboral pole,
eventually being confined to the central part of the api-
cal organ floor (Figure 5Q-X). MILmx is expressed in
two groups of cells at the aboral pole just after gastrula-
tion, along the tentacular plane (Figure 5Y). These cells
eventually form part of the tentacle bulbs (Figure 5C’-
F’). At 12 to 14 hpf, there is an additional expression
domain in the ectoderm of the aboral pole in four
groups of cells (Figure 5C’, E’), which later appear to
overlap with M[Lhx1/5 in the region of the putative
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Figure 4 Phylogenetic Tree of Lhx genes. Maximum likelihood and Bayesian analysis consensus tree based on the tandem LIM domains and
homeodomain, support values are indicated by Likelihood > 50/Bayesian analyses >.95, low support indicated by an asterisk. Construction of the
Lhx gene orthology was conducted in RaxML v7.0.0 [82] using maximum likelihood analysis under the JTT I+G model of evolution determined
by ProtTest v1.4 analysis [83]. A total of 1,000 searches was performed and 500 bootstrap replicates were applied to the tree with the best
likelihood score used to generate branch support values. Bayesian analysis used two runs of Mr Bayes after 2,000,000 generations, JTT I+G, burnin
= 5000 trees. Tree was rooted to the unicellular choanoflagellate Monosiga brevicollis LIM domain containing gene paxilin. Ag, Amphimedon
queenslandica; Ca, Capsaspora owczarzaki; Dan, Danio rerio; Dm, Drosophila melanogaster; Gal, Gallus gallus; Hs, Homo sapiens;, MI, Mnemiopsis
leidyi; Mon, Monosiga brevicollis; Nv, Nematostella vectensis; Ta,Trichoplax adhaerens.
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Table 1 Genomic complement of Lim homeobox genes

Cnidaria Placozoa Ctenophora Porifera
Nematostella Trichoplax Mnemiopsis Amphimedon
Apterous L-L-H L-L-H
Lhx2/9
Arrowhead L-L-H L-L
Lhx6/8
Islet L-L-H L-L-H L-L-H L-L-H
Lhx1/5 L-L-H L-L-H L-L-H L-L-H
Lhx3/4 L-L-H L-L-H L-L-H L-L-H
Lmx L-H L-L-H L-L-H
LMO L-L L-L
Ldb LB LB

The genomic complement of LIM homeobox genes within the four basal
metazoans. Ctenophores contain a genomic complement more similar to
sponges than to placozoa and cnidarians, which have the full bilaterian
complement of LIM homeobox genes. No synteny is found between the LIM
homeobox genes in Mnemiopsis. H, Homeobox domain; L, LIM binding
domains; LB, LIM binding domain.

photoreceptors in the floor of the apical organ (Figure
50).

In summary, all four Lhx genes are expressed in the
apical organ at the cydippid stage, in addition to other
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(Aboral View)

. Overlap of Mllslet, MILmx, MILhx1/5
Q Milslet additional expression

. MILmx additional expresion

{) MiLhx3/4 expresion

anal pores

Figure 6 Lhx expression diagram. Summary diagram of the aboral
overlapping and non-overlapping Lhx expression domains during the
cydippid stage of Mnemiopsis. Overlapping expression is found in the
four groups of cells within the apical organ that correspond to
putative photosensory cells, indicated by red arrows. Non-overlapping
domains include portions of the apical organ and associated polar

fields, highly innervated sensory and nervous structures.

regions (Figure 6). MILhx1/5, MILmx, and Mllslet are
expressed in an overlapping region, while MILhx3/4 is
expressed in other gene-specific regions of the apical
organ. The other regions of expression include the polar

MILhx1/5 expression.

Figure 5 Whole mount in situ hybridization of Lhx genes in Mnemiopsis. \Whole mount in situ hybridization of Mlislet (A-H), MiLhx1/5 (I-P),
MILhx3/4 (Q-X), and MILmx (Y-F"), purple staining represents the localization of detected mRNA transcripts. The above cartoons are
representations of the underlying corresponding stages of development. All views are either aboral or lateral where indicated, with the asterisk
representing the blastopore and future mouth. (A-H) Miislet is expressed in aboral ectodermal cells, adjacent to MILhx3/4, that give rise to part of
the apical organ floor as well as the polar fields. (I-P) MiLhx1/5 is expressed around the blastopore, which gives rise to the pharynx. It is also
expressed in mesodermal cells that give rise to the photocytes, which underlie four of the comb rows. There is late expression in four small
groups of cells in the apical organ which overlap with cells that give rise to proposed photosensory cells. (Q-X) MiLhx3/4 is expressed in the
aboral ectoderm, in a large group of cells that gives rise to part of the apical organ. (Y-F') MILmx is expressed in two groups of cells that give
rise to part of the tentacle bulb apparatus. Expression is also found in the same four groups of cells in the apical organ that overlap with the
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fields (Mllslet), photocytes and pharynx (MILhx1/5), and
tentacle bulb apparatus (M/[Lmx).

Discussion

Lhx gene complements

By probing the full genome of M. leidyi, we find that it
has a genetic complement more similar to that of the
sponge lineage than to the complete repertoire of Lhx
gene subfamilies found in placozoans, cnidarians, and
bilaterians. These data provide further evidence of the
basal position of ctenophore and sponge lineages relative
to Parahoxazoans. While multiple independent gene loss
in both ctenophore and sponge clades may be the cause
for this apparent synapomorphy, growing arguments
based on genomic content, are suggesting a close link
between sponges and ctenophores, including the exis-
tence of homeodomain containing transcription factor
complement [45], nuclear receptor repertoire [47], Wnt
signaling pathway [46], and TGF beta pathway [52].

Mnemiopsis expression data
Lhx genes are expressed in regions which contain the
highest concentration of neural elements in the cnidar-
ian Nematostella, including the apical tuft and nerve
rings around the mouth and in the pharynx [6]. In the
sponge Amphimedon, there are broader expression
domains; however, there are overlapping domains asso-
ciated with the photosensory pigment ring, suggesting
that Lhx genes are playing a combinatorial role in
neural or sensory cell fate specification across the
Metazoa, including the basal metazoans [6]. The
expression data here suggest Lhx genes are deployed
in a similar fashion in the ctenophore Mnemiopsis.
There are both overlapping and gene-specific expres-
sion domains associated with the apical sensory organ,
a highly innervated structure involved in gravity, light,
and pressure detection [53]. MILhx1/5, MILmx and
MllIslet have overlapping expression in the putative
photoreceptor cells (Figure 6), while MILhx3/4 and
MllIslet are also expressed in other parts of the apical
organ. It is possible that a ‘LIM code’ is involved in
specifying different neural territories or cell types of
the apical organ. Although the molecular interactions
of only Lhx3/4 and Islet have been studied in depth
[22], it is not unlikely that other Lhx genes may be
able to form complexes to differentially regulate gene
expression patterns. The expression of Lhx genes also
forms distinct boundaries within the apical organ and
associated polar fields, which may contribute to regio-
nal specificity, axonal projection boundaries, or neural
transmitter phenotypes of these neural structures as is
seen in bilaterians [54].

Previous studies have described other genes in different
regions of the apical organ of Mnemiopsis, including the
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T-box genes Thx2/3 and Brachyury [55], the homeobox
genes Prdl and Prd3 [56], the Wnt genes M/Wnt6 and
MIWntX [46], as well as the zinc fingers MIGli and MIGlis
[57]. Histological and electron microscopic studies of the
ctenophore apical organ have suggested it is a highly
innervated sensory structure [58-71]; however, gene
expression studies suggest that it is much more complex
than previously thought. These data are supported by
recent work in the ctenophore, Pleurobrachia pileus;
immunohistochemical studies have shown that there is a
highly complex nerve net underlying the apical organ, as
well as distinct groups of neurons within the apical organ
floor that belie its morphological simplicity [72]. Using
this information about the neural anatomy of ctenophores,
we suggest that ctenophore Lhx genes are expressed in a
combinatorial fashion in the developing sensory cells asso-
ciated with the apical organ.

In addition to the apical organ, Lhx expression domains
are also seen in putative neurosensory regions such as the
polar fields expression of MIIslet. While these ciliated
structures have been identified morphologically and his-
tologically [59,72], their function has remained largely
unknown. They have been proposed to be olfactory
organs [58,73-75], however, there is little evidence to
confirm this. The recent immunohistological study of P.
pileus by Jager et al. [72] identified a special nerve net
that extended throughout the polar fields, as well as
extensive neuro-sensory structures, termed ‘Z bodies.’
The gene expression of MlIslet overlaps with the Z
bodies, but is not specific to them; instead the expression
domain encompasses the entirety of the polar fields.

The expression of MILhx1/5 in the presumptive
photocytes is also quite intriguing. Ctenophores are cap-
able of bioluminescence via calcium-activated photopro-
teins [76], but the mechanism or function has yet to be
elucidated. The photocytes are located around the meri-
dional canals underlying the comb rows [77]. In addition
to photoprotein genes, these cells also express an opsin
gene [78], which suggests that these cells may represent
an ancestral neuroeffector cell type. They express a gene
that senses the environment (light-sensing via opsin),
and an effector (photoprotein, generating light produc-
tion) preceded by a transcription factor (MILhx1/5),
such that these photocytes appear to be capable of both
sensing as well as responding to stimuli.

MILhx1/5 expression is also found around the blasto-
pore and is regionally localized to a portion of the phar-
ynx in later stages. Considering that Lhx1/5 is expressed
around the blastopore in many bilaterians, as well as the
cnidarian Nematostella, we can speculate that besides
neural patterning, Lhx1/5 was an ancestral ‘blastoporal’
gene. However, whether it functions in organizing activ-
ity in ctenophores, as it does in bilaterians, remains to
be determined.
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Conclusion

Recent gene content studies [45-47] give support for
Porifera and Ctenophora diverging prior to the Para-
Hoxozoa (Placozoa, Cnidaria, Bilaterian) during early
animal evolution. This is further supported by the pre-
sent study, in which we have further classified the geno-
mic complement of M. leidyi Lhx genes. Comprehensive
phylogenetic analyses of LIM genes [79] in addition to
our Lhx gene phylogenetic analyses of cnidarians, cteno-
phores, sponges and placozoans, indicate that the ances-
tor of ctenophores and sponges likely had three or four
Lhx gene subfamilies: Lhx1/5, Islet, Lhx 3/4, and Lmzx.
The common ancestor of ParaHoxozoa contained three
more Lhx gene subclasses, the LIM domain binding pro-
teins, and the gene family LMO which was formed by
duplications from a pre-existing Lhx gene subclass.
Mnemiopsis Lhx genes are expressed in both overlap-
ping and non-overlapping domains within proposed
neural and sensory cell territories. These data suggest
that Lhx genes first likely played a role in the patterning
of sensory cells, as is seen in sponge larval photorecep-
tive cells [6]. In other animal lineages with more com-
plex nervous systems, Lhx genes appear to have a
conserved role in patterning neural and sensory cell
types. This apparent link shows support for the hypoth-
esis that neural cell types may have evolved from non-
neural sensory cells. An alternate hypothesis may be
that sponges lost components of a simple nervous sys-
tem after the split with ctenophores, or the ctenophore
nervous system arose independently as a case of conver-
gent evolution. These competing hypotheses still need
to be considered due to the unexpected complex reper-
toire of structural and patterning nervous system genes
found within sponges [34,35]. Future genomic, expres-
sion, and functional studies are needed to characterize
the molecular nature of the ctenophore nervous system.

Methods

Animal collection, RNA extraction and cDNA synthesis

M. leidyi adults were collected from Eel Pond or the
NOAA Rock Jetty in Woods Hole, MA, during the
months of June and July and spawned as previously
described [80]. RNA was extracted from embryos at reg-
ular intervals from fertilization to 36 hpf using TRI
Reagent (Molecular Research Center, Cincinnati, OH,
USA) [80]. RNA was reverse transcribed to generate
c¢DNA using the SMARTer RACE ¢cDNA Amplification
Kit (BD Biosciences, San Jose, CA, USA).

Identification of LIM homeobox genes in ctenophores

The Mnemiopsis genome was scanned in silico for genes
of interest using a reciprocal BLAST approach. Human,
Drosophila, and Nematostella orthologs were used as
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queries for TBLASTN searches. Candidate matches
were then used in BLASTP searches of the human gen-
ome to find the closest hit. If the closest match was not
the original ortholog or the E-value was greater than
0.001, then it was coded as being absent from the gen-
ome. For all genes of interest, gene-specific primers
were designed for RACE PCR (MacVector, Cary, NC,
USA). RACE PCR fragments were then conceptually
spliced and aligned back to genomic contigs for compar-
ison of intron-exon boundaries using Sequencher (Gene
Codes, Ann Arbor, MI, USA). The following genes were
isolated and fully sequenced: MILhx1/5 [Genbank:
JF912807], MILhx3/4 [Genbank: JF912808], Mlislet
[Genbank: JF912806], and MILmx [Genbank: JF912809].

Whole mount in-situ hybridization

Embryos were fixed at various stages from freshly col-
lected uncleaved embryos (0 hpf) to cydippids (24 to 36
hpf) [80]. They were stored in methanol at -20°C until
ready to use. Digoxygenin-labeled M. leidyi Lhx gene
riboprobes (Ambion/Applied Biosystems, Inc., Foster
City, CA, USA of the following sizes: MlIslet 1200 bp,
MILmx 1100 bp, MILhx1/5 850 bp, and MILhx3/4 1500
bp, were hybridized for 48 hours at 60°C at 0.1 ng/ul
and detected using an alkaline phosphatase conjugated
antibody (Roche Applied Science Inc, Indianapolis, IN,
USA) and the colorimetric substrate NBT/BCIP (Roche
Applied Science Inc, Indianapolis, IN, USA) Following
detection, specimens were washed with phosphate-buf-
fered saline and transferred through a glycerol series up
to 70% glycerol. They were then mounted on glass
slides, viewed under an Axioskop 2 compound micro-
scope, and imaged using an AxioCam HRc with Axiovi-
sion software (Zeiss Inc, Jena, Germany). Color balance
and brightness were adjusted using Adobe Photoshop
CS3. The only modification to the in situ protocol is a
change in acetic anhydride treatment (treated in 0.1 M
triethanolamine rather than 1% w/v). For the most
recently updated protocols, contact the authors. All in
situ images presented here, as well as additional devel-
opmental stages and/or views, are available online via
the comparative gene expression database, Kahikai
http://www.kahikai.com.

Phylogenetic analysis

M. leidyi Lhx protein sequences were aligned to the
complements of Lhx proteins of the various species: H.
sapiens, Drosophila melanogaster, N. vectensis, T. adhae-
rens, and A. queenslandica, and outgroup sequences of
LIM-only domain containing gene 4 (LA O4) in addition
to the above species when present, G. gallus, D. rerio,
and the related unicellular choanoflagellates M. brevicol-
lis, and C. owczarzaki LIM domain-containing genes
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paxilin and ablim (full sequence data provided in Addi-
tional file 2, using MUSCLE (default parameters) and
trimmed by eye in Jalview [81] to include the conserved
LIM domains and Homeodomains. Construction of the
Lhx gene orthology was conducted in RaxML v7.0.0
[82], using maximum likelihood analysis under the JTT
I+G model of evolution determined by ProtTest v1.4
analysis [83]. A total of 1,000 searches was performed
and 500 bootstrap replicates were applied to the tree
with the best likelihood score used to generate branch
support values. Bayesian phylogenetic analyses were also
performed with MrBayes 3.1 [84] using the JTT I+G
model with two runs of 2,000,000 generations sampled
every 100 generations. The first 5,000 trees were disre-
garded as burn-in.

Additional material

Additional file 1: Alignments of Lhx gene homeodomain sequences.
Alignment of Lhx1/5, Lhx3/4, and Islet genes homeodomain regions.
Introns positions indicated by (0). Ama, Amphimedon queenslandica; Hs,
Homo sapiens; MI,Mnemiopsis leidyi; Nv, Nematostella vectensis; Ta,
Trichoplax adhaerens. A. Human LhxT and Lhx5 have a shared intron not
found within any other species. The Mnemiopsis Lhx1/5 gene contains an
intron that is also not shared with any other species in this study and
appears to be species specific. B. The Lhx3/4 gene in Mnemiopsis has two
introns not found in any other species examined and appears to be
species specific. Humans also have an intron position not shared with
the other species. C. The Islet gene in Mnemiopsis has a species specific
intron position interrupting its homeodomain sequence. Nematostellla
has an intron interrupting the homeodomain sequence in a different
location than the ctenophore sequence. Both the Mnemiopsis and
Nematostellla intron positions do not overlap and seem to not be
related. Humans, placozoans, and sponges do not have introns
interrupting the homeodomain sequences.

Additional file 2: Full sequence data. The full sequence data of all of
the LIM genes used in this study. Gene accession numbers,
corresponding gene names used in the phylogeny, and species name
are listed in table format.
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Ablim: actin binding LIM; bp: base pair; BLAST: Basic Local Alignment Search
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homeodomain; Ldb: LIM domain-binding protein; Lhx: LIM homeobox
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