Skip to main content
Figure 4 | EvoDevo

Figure 4

From: Breaking evolutionary and pleiotropic constraints in mammals: On sloths, manatees and homeotic mutations

Figure 4

Homeotic transformations in humans and other mammals. A) Human skeleton with rudimentary ribs on the 7th and 19th vertebrae, indicating incomplete homeotic transformations at the cervico-thoracic and thoraco-lumbar boundary (white arrows). Note the change from 24 to 23 presacral vertebrae. From [81]. B) Human skeleton with rudimentary ribs on the first thoracic vertebra (white arrows). Note the change from 24 to 25 presacral vertebrae, the abnormal shape of the fourth rib on the right (white arrowhead) and the asymmetric sternum (asymmetric transition of the manubrium to the corpus sterni). From [81]. C) Human fetal skeleton with rudimentary ribs on the 7th and unilaterally on the 19th vertebrae (white arrows). From [85]. D) Rudimentary first rib with long fibrous band (arrow) connecting to the first rib and sternum in horse (cf. Trichechus manatus with rudimentary rib and fibrous band in Figure 7F. Note that the sternal part is present, attached to the sternum (arrowhead). From [78]. E) and F), unilateral and bilateral complete rudimentary ribs in the slow lori (Nycticebus sp.). From [5]. G) Human skeleton showing rudimentary ribs on the eighth vertebra (white arrows) and a fusion of the second and third vertebra (white arrowhead). From [81]. H) The presence of a cervical rib leads to pressure on the nerves and arteries that go into the arm, especially when the anterior scalenus muscle is contracted. This may lead to Thoracic outlet syndrome. From [139].

Back to article page