Skip to main content
Fig. 11 | EvoDevo

Fig. 11

From: PaxA, but not PaxC, is required for cnidocyte development in the sea anemone Nematostella vectensis

Fig. 11

Cnidogenesis in N. vectensis is temporally and spatially dynamic. a Hypothesis 1: Cnidocytes develop from multiple independent populations of cells all present in the same epithelium at the same time. b Hypothesis 2: There is a single population of developing cnidocytes and all combinations of gene expression presented here result from temporal shifts in gene expression. In both cases, Ncol mRNA (purple) must be expressed before NCOL protein is detectable (blue) and, when expressed, PaxA (red) and Mef2IV (yellow) must be upregulated before Ncol mRNA. Horizontal lines in a, b represent an arbitrary threshold of detectable expression. c SoxB2-expressing progenitor cells give rise to both neurons and cnidocytes in N. vectensis. Post-mitotic neurons differentiate from cells expressing pro-neural genes, though the existence of “pro-cnido” genes (expressed in a progenitor that gives rise only to cnidocytes) is still only hypothesized (indicated by dotted lines). Three populations of cnidocytes may be present. Two populations differ only in the expression of Mef2IV and are hypothesized to become either basitrichous isorhizas and microbasic p-mastigophores or the two distinct size classes of basitrichous isorhizas. A third population expresses Ncol1, Ncol3, Ncol4, and Ngal, but the transcription factor that activates expression of these cnidocyte-specific genes is unknown. We hypothesize that this population of cnidocytes becomes spirocytes

Back to article page