Maynard Smith J, Szathmáry E. The major transitions in evolution. Oxford: W.H. Freeman Spektrum; 1995.
Google Scholar
Niklas KJ, Newman SA. The origins of multicellular organisms. Evol Dev. 2013;15:41–52.
Article
PubMed
Google Scholar
Niklas KJ, Newman SA. The many roads to (and from) multicellularity. J Exp Bot. 2019;71:3247–53.
Article
PubMed Central
Google Scholar
Niklas KJ, Newman SA, editors. Multicellularity: origins and evolution. Cambridge: The MIT Press; 2016.
Google Scholar
Sebe-Pedros A, Degnan BM, Ruiz-Trillo I. The origin of Metazoa: a unicellular perspective. Nat Rev Genet. 2017;18:498–512.
Article
CAS
PubMed
Google Scholar
Brunet T, King N. The origin of animal multicellularity and cell differentiation. Dev Cell. 2017;43:124–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonner JT. Life cycles. Princeton: Princeton University Press; 1993.
Google Scholar
Tarnita CE, Taubes CH, Nowak MA. Evolutionary construction by staying together and coming together. J Theor Biol. 2013;320:10–22.
Article
PubMed
Google Scholar
Bonner JT. The origins of multicellularity. Integre Biol. 1998;1:27–36.
Article
Google Scholar
Grosberg RK, Strathmann R. The evolution of multicellularity: a minor major transition? Annu Rev Ecol Evol Syst. 2007;38:621–54.
Article
Google Scholar
Brown MW, Silberman JD. The non-dictyostelid sorocarpic amoebae. In: Romeralo M, Mesquita A, Escalante R, editors. Dictyostelids evolution, genomics and cell biology. Heidelberg: Springer; 2013. p. 219–242.
Google Scholar
Hamant O, Bhat R, Nanjundiah V, Newman SA. Does resource availability help determine the evolutionary route to multicellularity? Evol Dev. 2019;21:115–9.
Article
PubMed
PubMed Central
Google Scholar
Fisher RM, Shik JZ, Boomsma JJ.: The evolution of multicellular complexity: the role of relatedness and environmental constraints. bioRxiv. 2019.
Newman SA. Physico-genetics of morphogenesis: the hybrid nature of developmental mechanisms. In: Minelli A, Pradeu T, editors. Toward a theory of development. Oxford: Oxford University Press; 2014. p. 95–113.
Chapter
Google Scholar
Newman SA. Inherent forms and the evolution of evolution. J Exp Zool B Mol Dev Evol. 2019;332:331–8.
Article
PubMed
Google Scholar
Romeralo M, Baldauf S, Escalante R. Dictyostelids: evolution, genomics and cell biology. Heidelberg: Springer; 2013.
Book
Google Scholar
Yang Z, Higgs PI. Myxobacteria: genomics, cellular and molecular biology. Norfolk: Caister Academic Press; 2014.
Google Scholar
Keating MT, Bonner JT. Negative chemotaxis in cellular slime molds. J Bacteriol. 1977;130:144–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thutupalli S, Sun M, Bunyak F, Palaniappan K, Shaevitz JW. Directional reversals enable Myxococcus xanthus cells to produce collective one-dimensional streams during fruiting-body formation. J R Soc Interface. 2015;12:20150049.
Article
PubMed
PubMed Central
Google Scholar
Whitworth DE. Myxobacteria: multicellularity and differentiation. Washington, DC: ASM Press; 2008.
Google Scholar
Nanjundiah V, Saran S. The determination of spatial pattern in Dictyostelium discoideum. J Biosci. 1992;17:353–94.
Article
Google Scholar
Kawli TS, Kaushik S. Cell fate choice and social evolution in Dictyostelium discoideum: interplay of morphogens and heterogeneities. J Biosci. 2001;26:130–3.
Article
CAS
PubMed
Google Scholar
Raper K. Pseudoplasmodium formation and organization in Dictyostelium discoideum. J Elisha Mitchell Sci Soc. 1940;56:241–82.
Google Scholar
Schaap P, Winckler T, Nelson M, Alvarez-Curto E, Elgie B, Hagiwara H, Cavender J, Milano-Curto A, Rozen DE, Dingermann T, et al. Molecular phylogeny and evolution of morphology in the social amoebas. Science. 2006;314:661–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arias Del Angel JA, Escalante AE, Martinez-Castilla LP, Benitez M. An evo-devo perspective on multicellular development of Myxobacteria. J Exp Zool B Mol Dev Evol. 2017;328:165–78.
Article
PubMed
Google Scholar
Furusawa C, Kaneko K. Origin of multicellular organisms as an inevitable consequence of dynamical systems. Anat Rec. 2002;268:327–42.
Article
PubMed
Google Scholar
Mora Van Cauwelaert E, Arias Del Angel JA, Benitez M, Azpeitia EM. Development of cell differentiation in the transition to multicellularity: a dynamical modeling approach. Front Microbiol. 2015;6:603.
Article
PubMed
PubMed Central
Google Scholar
Bonner JT. The social amoebae: the biology of cellular slime molds. Princeton: Princeton University Press; 2009.
Google Scholar
Bonner JT. Evolutionary strategies and developmental constraints in the cellular slime molds. Am Nat. 1982;119:530–52.
Article
Google Scholar
Olson ME. The developmental renaissance in adaptationism. Trends Ecol Evol. 2012;27:278–87.
Article
PubMed
Google Scholar
Kaiser D. Control of multicellular development: Dictyostelium and Myxococcus. Annu Rev Genet. 1986;20:539–66.
Article
CAS
PubMed
Google Scholar
Romeralo M, Skiba A, Gonzalez-Voyer A, Schilde C, Lawal H, Kedziora S, Cavender JC, Glockner G, Urushihara H, Schaap P. Analysis of phenotypic evolution in Dictyostelia highlights developmental plasticity as a likely consequence of colonial multicellularity. Proc Biol Sci. 2013;280:20130976.
PubMed
PubMed Central
Google Scholar
Fujimori T, Nakajima A, Shimada N, Sawai S. Tissue self-organization based on collective cell migration by contact activation of locomotion and chemotaxis. Proc Natl Acad Sci USA. 2019;116:4291–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Umeda T, Inouye K. Possible role of contact following in the generation of coherent motion of Dictyostelium cells. J Theor Biol. 2002;219:301–8.
Article
PubMed
Google Scholar
Bretschneider T, Othmer HG, Weijer CJ. Progress and perspectives in signal transduction, actin dynamics, and movement at the cell and tissue level: lessons from Dictyostelium. Interface Focus. 2016;6:20160047.
Article
PubMed
PubMed Central
Google Scholar
Newman SA, Bhat R. Dynamical patterning modules: a "pattern language" for development and evolution of multicellular form. Int J Dev Biol. 2009;53:693–705.
Article
CAS
PubMed
Google Scholar
Newman SA. Development and evolution: the physics connection. In: Love AC, editor. Conceptual change in biology: scientific and philosophical perspectives on evolution and development. Dordrecht: Springer; 2014. p. 421–440.
Google Scholar
Rivera-Yoshida N, Arias Del Angel JA, Benitez M. Microbial multicellular development: mechanical forces in action. Curr Opin Genet Dev. 2018;51:37–45.
Article
CAS
PubMed
Google Scholar
Benítez M, Hernández-Hernández V, Newman SA, Niklas KJ. Dynamical patterning modules, biogeneric materials, and the evolution of multicellular plants. Front Plant Sci. 2018;9:871.
Article
PubMed
PubMed Central
Google Scholar
Steinberg MS, Poole TJ. Liquid behavior of embryonic tissues. In: Bellairs R, Curtis ASG, editors. Cell behavior. Cambridge: Cambridge University Press; 1982. p. 583–607.
Google Scholar
Petridou NI, Heisenberg CP. Tissue rheology in embryonic organization. EMBO J. 2019;38:e102497.
Article
CAS
PubMed
PubMed Central
Google Scholar
Newman SA, Comper WD. 'Generic' physical mechanisms of morphogenesis and pattern formation. Development. 1990;110:1–18.
CAS
PubMed
Google Scholar
Newman SA, Bhat R. Dynamical patterning modules: physico-genetic determinants of morphological development and evolution. Phys Biol. 2008;5:15008.
Article
Google Scholar
Thorne BC, Bailey AM, DeSimone DW, Peirce SM. Agent-based modeling of multicell morphogenic processes during development. Birth Defects Res C Embryo Today. 2007;81:344–53.
Article
CAS
PubMed
Google Scholar
Newman SA. Inherency of form and function in animal development and evolution. Front Physiol. 2019;10:702.
Article
PubMed
PubMed Central
Google Scholar
Hernández-Hernández V, Niklas KJ, Newman SA, Benítez M. Dynamical patterning modules in plant development and evolution. Int J Dev Biol. 2012;56:661–74.
Article
PubMed
CAS
Google Scholar
Newman SA. 'Biogeneric' developmental processes: drivers of major transitions in animal evolution. Philos Trans R Soc Lond B Biol Sci. 2016;371:20150443.
Article
PubMed
PubMed Central
CAS
Google Scholar
Forgacs G, Newman SA. Biological physics of the developing embryo. Cambridge: Cambridge Univ. Press; 2005.
Book
Google Scholar
Coates JC, Harwood AJ. Cell-cell adhesion and signal transduction during Dictyostelium development. J Cell Sci. 2001;114:4349–58.
CAS
PubMed
Google Scholar
Huber RJ, O'Day DH. Extracellular matrix dynamics and functions in the social amoeba Dictyostelium: a critical review. Biochim Biophys Acta Gen Subj. 2017;1861:2971–80.
Article
CAS
PubMed
Google Scholar
Arnold JW, Shimkets LJ. Cell surface properties correlated with cohesion in Myxococcusxanthus. J Bacteriol. 1988;170:5771–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Behmlander RM, Dworkin M. Integral proteins of the extracellular matrix fibrils of Myxococcus xanthus. J Bacteriol. 1994;176:6304–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Behmlander RM, Dworkin M. Biochemical and structural analyses of the extracellular matrix fibrils of Myxococcusxanthus. J Bacteriol. 1994;176:6295–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shimkets LJ. Correlation of energy-dependent cell cohesion with social motility in Myxococcusxanthus. J Bacteriol. 1986;166:837–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin Z, Sriskanthadevan S, Huang H, Siu CH, Yang D. Solution structures of the adhesion molecule DdCAD-1 reveal new insights into Ca(2+)-dependent cell-cell adhesion. Nat Struct Mol Biol. 2006;13:1016–22.
Article
CAS
PubMed
Google Scholar
Siu CH. Cell-cell adhesion molecules in Dictyostelium. BioEssays. 1990;12:357–62.
Article
CAS
PubMed
Google Scholar
Bowers-Morrow VM, Ali SO, Williams KL. Cell adhesion during the migratory slug stage of Dictyostelium discoideum. Cell Biol Int. 2002;26:951–62.
Article
CAS
PubMed
Google Scholar
Fidler AL, Vanacore RM, Chetyrkin SV, Pedchenko VK, Bhave G, Yin VP, Stothers CL, Rose KL, McDonald WH, Clark TA, et al. A unique covalent bond in basement membrane is a primordial innovation for tissue evolution. Proc Natl Acad Sci USA. 2014;111:331–6.
Article
CAS
PubMed
Google Scholar
Faure LM, Fiche JB, Espinosa L, Ducret A, Anantharaman V, Luciano J, Lhospice S, Islam ST, Treguier J, Sotes M, et al. The mechanism of force transmission at bacterial focal adhesion complexes. Nature. 2016;539:530–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fukujin F, Nakajima A, Shimada N, Sawai S. Self-organization of chemoattractant waves in Dictyostelium depends on F-actin and cell-substrate adhesion. J R Soc Interface. 2016;13:20160233.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mittenthal JE, Mazo RM. A model for shape generation by strain and cell-cell adhesion in the epithelium of an arthropod leg segment. J Theoret Biol. 1983;100:443–83.
Article
CAS
Google Scholar
Zhang H, Vaksman Z, Litwin DB, Shi P, Kaplan HB, Igoshin OA. The mechanistic basis of Myxococcusxanthus rippling behavior and its physiological role during predation. PLoS Comput Biol. 2012;8:e1002715.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bahar F, Pratt-Szeliga PC, Angus S, Guo J, Welch RD. Describing Myxococcusxanthus aggregation using Ostwald ripening equations for thin liquid films. Sci Rep. 2014;4:6376.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petridou NI, Grigolon S, Salbreux G, Hannezo E, Heisenberg CP. Fluidization-mediated tissue spreading by mitotic cell rounding and non-canonical Wnt signalling. Nat Cell Biol. 2019;21:169–78.
Article
CAS
PubMed
Google Scholar
Manahan CL, Iglesias PA, Long Y, Devreotes PN. Chemoattractant signaling in dictyostelium discoideum. Annu Rev Cell Dev Biol. 2004;20:223–53.
Article
CAS
PubMed
Google Scholar
Hayakawa M, Hiraiwa T, Wada Y, Kuwayama H, Shibata T. Polar pattern formation induced by contact following locomotion in a multicellular system. Elife. 2020;9:e53609.
Article
PubMed
PubMed Central
Google Scholar
Tan RZ, Chiam KH. Computational modeling reveals that a combination of chemotaxis and differential adhesion leads to robust cell sorting during tissue patterning. PLoS ONE. 2014;9:e109286.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bi D, Zhang J, Chakraborty B, Behringer RP. Jamming by shear. Nature. 2011;480:355–8.
Article
CAS
PubMed
Google Scholar
Mongera A, Rowghanian P, Gustafson HJ, Shelton E, Kealhofer DA, Carn EK, Serwane F, Lucio AA, Giammona J, Campas O. A fluid-to-solid jamming transition underlies vertebrate body axis elongation. Nature. 2018;561:401–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palsson E. A 3-D model used to explore how cell adhesion and stiffness affect cell sorting and movement in multicellular systems. J Theor Biol. 2008;254:1–13.
Article
PubMed
Google Scholar
Dickinson DJ, Nelson WJ, Weis WI. An epithelial tissue in Dictyostelium challenges the traditional origin of metazoan multicellularity. BioEssays. 2012;34:833–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sager B, Kaiser D. Two cell-density domains within the Myxococcusxanthus fruiting body. Proc Natl Acad Sci USA. 1993;90:3690–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu W, Li L, Sharma S, Wang J, McHardy I, Lux R, Yang Z, He X, Gimzewski JK, Li Y, Shi W. DNA builds and strengthens the extracellular matrix in Myxococcusxanthus biofilms by interacting with exopolysaccharides. PLoS ONE. 2012;7:e51905.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu G, Patch A, Bahar F, Yllanes D, Welch RD, Marchetti MC, Thutupalli S, Shaevitz JW. Self-driven phase transitions drive Myxococcusxanthus fruiting body formation. Phys Rev Lett. 2019;122:248102.
Article
CAS
PubMed
Google Scholar
Monier B, Suzanne M. The morphogenetic role of apoptosis. Curr Top Dev Biol. 2015;114:335–62.
Article
CAS
PubMed
Google Scholar
Suzanne M, Steller H. Shaping organisms with apoptosis. Cell Death Differ. 2013;20:669–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boynton TO, McMurry JL, Shimkets LJ. Characterization of Myxococcus xanthus MazF and implications for a new point of regulation. Mol Microbiol. 2013;87:1267–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mesquita A, Cardenal-Munoz E, Dominguez E, Munoz-Braceras S, Nunez-Corcuera B, Phillips BA, Tabara LC, Xiong Q, Coria R, Eichinger L, et al. Autophagy in dictyostelium: mechanisms, regulation and disease in a simple biomedical model. Autophagy. 2017;13:24–40.
Article
CAS
PubMed
Google Scholar
Asally M, Kittisopikul M, Rue P, Du Y, Hu Z, Cagatay T, Robinson AB, Lu H, Garcia-Ojalvo J, Suel GM. Localized cell death focuses mechanical forces during 3D patterning in a biofilm. Proc Natl Acad Sci USA. 2012;109:18891–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arnoult D, Tatischeff I, Estaquier J, Girard M, Sureau F, Tissier JP, Grodet A, Dellinger M, Traincard F, Kahn A, et al. On the evolutionary conservation of the cell death pathway: mitochondrial release of an apoptosis-inducing factor during Dictyostelium discoideum cell death. Mol Biol Cell. 2001;12:3016–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cornillon S, Foa C, Davoust J, Buonavista N, Gross JD, Golstein P. Programmed cell death in Dictyostelium. J Cell Sci. 1994;107(Pt 10):2691–704.
CAS
PubMed
Google Scholar
Kawli T, Venkatesh BR, Kennady PK, Pande G, Nanjundiah V. Correlates of developmental cell death in Dictyostelium discoideum. Differentiation. 2002;70(6):272–81.
Article
CAS
PubMed
Google Scholar
Niklas KJ, Wayne R, Benitez M, Newman SA. Polarity, planes of cell division, and the evolution of plant multicellularity. Protoplasma. 2019;256:585–99.
Article
CAS
PubMed
Google Scholar
Maree AF, Hogeweg P. How amoeboids self-organize into a fruiting body: multicellular coordination in Dictyostelium discoideum. Proc Natl Acad Sci USA. 2001;98:3879–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giniunaite R, Baker RE, Kulesa PM, Maini PK. Modelling collective cell migration: neural crest as a model paradigm. J Math Biol. 2020;80:481–504.
Article
PubMed
Google Scholar
Colombi A, Scianna M, Preziosi L. Collective migration and patterning during early development of zebrafish posterior lateral line. Philos Trans R Soc Lond B Biol Sci. 2020;375:20190385.
Article
PubMed
PubMed Central
Google Scholar
Dalle Nogare D, Chitnis AB. NetLogo agent-based models as tools for understanding the self-organization of cell fate, morphogenesis and collective migration of the zebrafish posterior Lateral Line primordium. Semin Cell Dev Biol. 2020;100:186–98.
Article
CAS
PubMed
Google Scholar
Nance J. Getting to know your neighbor: cell polarization in early embryos. J Cell Biol. 2014;206:823–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhat R, Glimm T, Linde-Medina M, Cui C, Newman SA. Synchronization of Hes1 oscillations coordinates and refines condensation formation and patterning of the avian limb skeleton. Mech Dev. 2019;156:41–544.
Article
CAS
PubMed
Google Scholar
Fukui Y. Mechanistics of amoeboid locomotion: signal to forces. Cell Biol Int. 2002;26:933–44.
Article
PubMed
Google Scholar
Du Q, Kawabe Y, Schilde C, Chen ZH, Schaap P. The evolution of aggregative multicellularity and cell–cell communication in the dictyostelia. J Mol Biol. 2015;427:3722–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chopra A, Nanjundiah V. The precision with which single cells of Dictyostelium discoideum can locate a source of cyclic AMP. Chaos Solitons Fractals. 2013;50:3–12.
Article
Google Scholar
Singer G, Araki T, Weijer CJ. Oscillatory cAMP cell–cell signalling persists during multicellular Dictyostelium development. Commun Biol. 2019;2:139.
Article
PubMed
PubMed Central
Google Scholar
Hashimura H, Morimoto YV, Yasui M, Ueda M. Collective cell migration of Dictyostelium without cAMP oscillations at multicellular stages. Commun Biol. 2019;2:34.
Article
PubMed
PubMed Central
Google Scholar
Matsukuma S, Durston AJ. Chemotactic cell sorting in Dictyostelium discoideum. J Embryol Exp Morphol. 1979;50:243–51.
CAS
PubMed
Google Scholar
Schaap P. Evolution of developmental cyclic adenosine monophosphate signaling in the Dictyostelia from an amoebozoan stress response. Dev Growth Differ. 2011;53:452–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guzzo M, Murray SM, Martineau E, Lhospice S, Baronian G, My L, Zhang Y, Espinosa L, Vincentelli R, Bratton BP, et al. A gated relaxation oscillator mediated by FrzX controls morphogenetic movements in Myxococcus xanthus. Nat Microbiol. 2018;3:948–59.
Article
CAS
PubMed
Google Scholar
Cotter CR, Schuttler HB, Igoshin OA, Shimkets LJ. Data-driven modeling reveals cell behaviors controlling self-organization during Myxococcusxanthus development. Proc Natl Acad Sci USA. 2017;114:E4592–E46014601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Igoshin OA, Goldbeter A, Kaiser D, Oster G. A biochemical oscillator explains several aspects of Myxococcus xanthus behavior during development. Proc Natl Acad Sci USA. 2004;101:15760–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Z, Igoshin OA, Cotter CR, Shimkets LJ. Agent-based modeling reveals possible mechanisms for observed aggregation cell behaviors. Biophys J. 2018;115:2499–511.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gloag ES, Turnbull L, Javed MA, Wang H, Gee ML, Wade SA, Whitchurch CB. Stigmergy co-ordinates multicellular collective behaviours during Myxococcusxanthus surface migration. Sci Rep. 2016;6:26005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Volfson D, Cookson S, Hasty J, Tsimring LS. Biomechanical ordering of dense cell populations. Proc Natl Acad Sci USA. 2008;105:15346–51.
Article
PubMed
PubMed Central
Google Scholar
Janulevicius A, van Loosdrecht M, Picioreanu C. Short-range guiding can result in the formation of circular aggregates in myxobacteria populations. PLoS Comput Biol. 2015;11:e1004213.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dworkin M. Myxobacteria. eLS. 2007:a0020391.
Manoil C, Kaiser D. Guanosine pentaphosphate and guanosine tetraphosphate accumulation and induction of Myxococcusxanthus fruiting body development. J Bacteriol. 1980;141:305–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manoil C, Kaiser D. Accumulation of guanosine tetraphosphate and guanosine pentaphosphate in Myxococcusxanthus during starvation and myxospore formation. J Bacteriol. 1980;141:297–304.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shimkets LJ. Intercellular signaling during fruiting-body development of Myxococcusxanthus. Annu Rev Microbiol. 1999;53:525–49.
Article
CAS
PubMed
Google Scholar
Chatterji D, Ojha AK. Revisiting the stringent response, ppGpp and starvation signaling. Curr Opin Microbiol. 2001;4:160–5.
Article
CAS
PubMed
Google Scholar
Boutte CC, Crosson S. Bacterial lifestyle shapes stringent response activation. Trends Microbiol. 2013;21:174–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cabello FC, Godfrey HP, Bugrysheva JV, Newman SA. Sleeper cells: the stringent response and persistence in the Borreliella (Borrelia) burgdorferi enzootic cycle. Environ Microbiol. 2017;19:3846–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuspa A, Plamann L, Kaiser D. A-signalling and the cell density requirement for Myxococcus xanthus development. J Bacteriol. 1992;174:7360–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crawford EW Jr, Shimkets LJ. The Myxococcusxanthus socE and csgA genes are regulated by the stringent response. Mol Microbiol. 2000;37:788–99.
Article
CAS
PubMed
Google Scholar
Crawford EW Jr, Shimkets LJ. The stringent response in Myxococcusxanthus is regulated by SocE and the CsgA C-signaling protein. Genes Dev. 2000;14:483–92.
CAS
PubMed
PubMed Central
Google Scholar
Bretl DJ, Kirby JR. Molecular mechanisms of signaling in Myxococcusxanthus development. J Mol Biol. 2016;428:3805–30.
Article
CAS
PubMed
Google Scholar
Gronewold TM, Kaiser D. Act operon control of developmental gene expression in Myxococcusxanthus. J Bacteriol. 2002;184:1172–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giglio KM, Zhu C, Klunder C, Kummer S, Garza AG. The enhancer binding protein Nla6 regulates developmental genes that are important for Myxococcusxanthus sporulation. J Bacteriol. 2015;197:1276–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sogaard-Andersen L, Overgaard M, Lobedanz S, Ellehauge E, Jelsbak L, Rasmussen AA. Coupling gene expression and multicellular morphogenesis during fruiting body formation in Myxococcusxanthus. Mol Microbiol. 2003;48:1–8.
Article
CAS
PubMed
Google Scholar
Julien B, Kaiser AD, Garza A. Spatial control of cell differentiation in Myxococcusxanthus. Proc Natl Acad Sci USA. 2000;97:9098–103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holmes AB, Kalvala S, Whitworth DE. Spatial simulations of myxobacterial development. PLoS Comput Biol. 2010;6:e1000686.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kaiser D. Signaling in myxobacteria. Annu Rev Microbiol. 2004;58:75–98.
Article
CAS
PubMed
Google Scholar
Huntley S, Wuichet K, Sogaard-Andersen L. Genome evolution and content in the myxobacteria. In: Yang Z, Higgs PI, editors. Myxobacteria: genomics, cellular and molecular biology. Norfolk: Caister Academic Press; 2014. p. 30–50.
Google Scholar
Knauber T, Doss SD, Gerth K, Perlova O, Muller R, Treuner-Lange A. Mutation in the rel gene of Sorangium cellulosum affects morphological and physiological differentiation. Mol Microbiol. 2008;69:254–66.
Article
CAS
PubMed
Google Scholar
Hardie DG. AMPK–sensing energy while talking to other signaling pathways. Cell Metab. 2014;20:939–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kadekar P, Roy R. AMPK regulates germline stem cell quiescence and integrity through an endogenous small RNA pathway. PLoS Biol. 2019;17:e3000309.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guerinier T, Millan L, Crozet P, Oury C, Rey F, Valot B, Mathieu C, Vidal J, Hodges M, Thomas M, Glab N. Phosphorylation of p27(KIP1) homologs KRP6 and 7 by SNF1-related protein kinase-1 links plant energy homeostasis and cell proliferation. Plant J. 2013;75:515–25.
Article
CAS
PubMed
Google Scholar
Zhang N, Cao L. Starvation signals in yeast are integrated to coordinate metabolic reprogramming and stress response to ensure longevity. Curr Genet. 2017;63:839–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maurya R, Kumar R, Saran S. Dictyostelium AMPKalpha regulates aggregate size and cell-type patterning. Open Biol. 2017;7:170055.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jang W, Gomer RH. Combining experiments and modelling to understand size regulation in Dictyostelium discoideum. J R Soc Interface. 2008;5(Suppl 1):S49–58.
CAS
PubMed
PubMed Central
Google Scholar
Jaiswal P, Kimmel AR. mTORC1/AMPK responses define a core gene set for developmental cell fate switching. BMC Biol. 2019;17:58.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jaiswal P, Majithia AR, Rosel D, Liao XH, Khurana T, Kimmel AR. Integrated actions of mTOR complexes 1 and 2 for growth and development of Dictyostelium. Int J Dev Biol. 2019;63:521–7.
Article
CAS
PubMed
Google Scholar
Hubaud A, Pourquie O. Signalling dynamics in vertebrate segmentation. Nat Rev Mol Cell Biol. 2014;15:709–21.
Article
CAS
PubMed
Google Scholar
Zusman DR, Scott AE, Yang Z, Kirby JR. Chemosensory pathways, motility and development in Myxococcusxanthus. Nat Rev Microbiol. 2007;5:862–72.
Article
CAS
PubMed
Google Scholar
Shimkets LJ, Kaiser D. Induction of coordinated movement of Myxococcusxanthus cells. J Bacteriol. 1982;152:451–61.
CAS
PubMed
PubMed Central
Google Scholar
Mauriello EM, Mignot T, Yang Z, Zusman DR. Gliding motility revisited: how do the myxobacteria move without flagella? Microbiol Mol Biol Rev. 2010;74:229–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blackhart BD, Zusman DR. "Frizzy" genes of Myxococcusxanthus are involved in control of frequency of reversal of gliding motility. Proc Natl Acad Sci USA. 1985;82:8767–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu Y, Kaiser AD, Jiang Y, Alber MS. Periodic reversal of direction allows Myxobacteria to swarm. Proc Natl Acad Sci USA. 2009;106:1222–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roos W, Nanjundiah V, Malchow D, Gerisch G (1975) Amplification of cyclic-AMP signals in aggregating cells of. FEBS Letters 53(2):139–142
Shaffer BM (1975) Secretion of cyclic AMP induced by cyclic AMP in the cellular slime mould Dictyostelium discoideum. Nature 255(5509):549–552
Tomchik KJ, Devreotes PN. Adenosine 3',5'-monophosphate waves in Dictyostelium discoideum: a demonstration by isotope dilution-fluorography. Science. 1981;212:443–6.
Article
CAS
PubMed
Google Scholar
Nanjundiah V, Wurster B. Is there a cyclic-AMP-independent oscillator in Dictyostelium discoideum? In: Goldbeter A, editor. Cell to cell signalling from experiments to theoretical models. Cambridge: Academic Press; 1989. p. 489–502.
Chapter
Google Scholar
Satoh H, Ueda T, Kobatake Y. Oscillations in cell shape and size during locomotion and in contractile activities of Physarum polycephalum, Dictyostelium discoideum, Amoeba proteus and macrophages. Exp Cell Res. 1985;156:79–90.
Article
CAS
PubMed
Google Scholar
Cohen MH, Robertson A. Wave propagation in the early stages of aggregation of cellular slime molds. J Theor Biol. 1971;31:101–18.
Article
CAS
PubMed
Google Scholar
Durston AJ. Dictyostelium discoideum aggregation fields as excitable media. J Theor Biol. 1973;42:483–504.
Article
CAS
PubMed
Google Scholar
Kuramoto Y. Chemical oscillations, waves, and turbulence. Berlin: Springer; 1984.
Book
Google Scholar
Strogatz SH. Sync: the emerging science of spontaneous order. 1st ed. New York: Theia; 2003.
Google Scholar
Garcia-Ojalvo J, Elowitz MB, Strogatz SH. Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. Proc Natl Acad Sci USA. 2004;101:10955–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gregor T, Fujimoto K, Masaki N, Sawai S. The onset of collective behavior in social amoebae. Science. 2010;328:1021–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vasiev B, Weijer CJ. Modelling of Dictyostelium discoideum slug migration. J Theor Biol. 2003;223:347–59.
Article
CAS
PubMed
Google Scholar
Odell GM, Bonner JT. How the Dictyostelium discoideum grex crawls. Philos Trans R Soc Lond B. 1986;312:487–525.
Article
Google Scholar
Jiang Y, Levine H, Glazier J. Possible cooperation of differential adhesion and chemotaxis in mound formation of Dictyostelium. Biophys J. 1998;75:2615–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Umeda T, Inouye K. Cell sorting by differential cell motility: a model for pattern formation in Dictyostelium. J Theor Biol. 2004;226:215–24.
Article
PubMed
Google Scholar
Savill NJ, Hogeweg P. Modelling morphogenesis: from single cells to crawling slugs. J Theor Biol. 1997;184:229–35.
Article
PubMed
Google Scholar
Marée AFM. From pattern formation to morphogenesis. multicellular coordination in Dictyostelium discoideum. University of Utrecht. 2000.
Marée AFM, Hogeweg P, Savill NJ. Dictyostelium discoidum as simulated by Mareé, Hogeweg and Savill. YouTube; 2013.
Trenchard H. Cell pelotons: a model of early evolutionary cell sorting, with application to slime mold Dictyostelium discoideum. J Theor Biol. 2019;469:75–95.
Article
PubMed
Google Scholar
Gregg K, Carrin I, Cox EC. Positional information and whorl morphogenesis in Polysphondylium. Dev Biol. 1996;180:511–8.
Article
CAS
PubMed
Google Scholar
Qualls GT, Stephens K, White D. Morphogenetic movements and multicellular development in the fruiting Myxobacterium, Stigmatella aurantiaca. Dev Biol. 1978;66:270–4.
Article
CAS
PubMed
Google Scholar
Sheikh S, Thulin M, Cavender JC, Escalante R, Kawakami SI, Lado C, Landolt JC, Nanjundiah V, Queller DC, Strassmann JE, et al. A new classification of the dictyostelids. Protist. 2018;169:1–28.
Article
PubMed
Google Scholar
Bonner JT, Cox EC. Pattern formation in dictyostelids. Semin Dev Biol. 1995;6:359–68.
Article
Google Scholar
Byrne G, Cox EC. Genesis of a spatial pattern in the cellular slime mold Polysphondylium pallidum. Proc Natl Acad Sci USA. 1987;84:4140–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
McNally JG, Cox EC. Geometry and spatial patterns in Polysphondylium pallidum. Dev Genet. 1988;9:663–72.
Article
CAS
PubMed
Google Scholar
McNally JG, Byrne G, Cox EC. Branching in Polysphondylium whorls: two-dimensional patterning in a three-dimensional system. Dev Biol. 1987;119:302–4.
Article
Google Scholar
Turing AM. The chemical basis of morphogenesis. Philos Trans R Soc Lond B. 1952;237:37–72.
Article
Google Scholar
Cox EC, Spiegel FW, Byrne G, McNally JW, Eisenbud L. Spatial patterns in the fruiting bodies of the cellular slime mold Polysphondylium pallidum. Differentiation. 1988;38:73–81.
Article
CAS
PubMed
Google Scholar
Benkova E, Bielach A. Lateral root organogenesis - from cell to organ. Curr Opin Plant Biol. 2010;13:677–83.
Article
PubMed
Google Scholar
Vermeer JE, Geldner N. Lateral root initiation in Arabidopsisthaliana: a force awakens. F1000Prime Rep. 2015;7:32.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang L, Wang H, Fang X, Stackebrandt E, Ding Y. Improved methods of isolation and purification of myxobacteria and development of fruiting body formation of two strains. J Microbiol Methods. 2003;54:21–7.
Article
PubMed
Google Scholar
Taylor RG, Welch RD. Chemotaxis as an emergent property of a swarm. J Bacteriol. 2008;190:6811–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Curtis PD, Taylor RG, Welch RD, Shimkets LJ. Spatial organization of Myxococcus xanthus during fruiting body formation. J Bacteriol. 2007;189:9126–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Copenhagen K, Alert R, Wingreen NS, Shaevitz JW. Topological defects induce layer formation in Myxococcusxanthus colonies. arXivorg 2020. arXiv:2001.03804.
Giniunaite R, McLennan R, McKinney MC, Baker RE, Kulesa PM, Maini PK. An interdisciplinary approach to investigate collective cell migration in neural crest. Dev Dyn. 2020;249:270–80.
Article
PubMed
Google Scholar
McLennan R, McKinney MC, Teddy JM, Morrison JA, Kasemeier-Kulesa JC, Ridenour DA, Manthe CA, Giniunaite R, Robinson M, Baker RE, et al. Neural crest cells bulldoze through the microenvironment using Aquaporin 1 to stabilize filopodia. Development. 2020. https://doi.org/10.1242/dev.185231.
Article
PubMed
Google Scholar
Christley S, Alber MS, Newman SA. Patterns of mesenchymal condensation in a multiscale, discrete stochastic model. PLoS Comput Biol. 2007;3:e76.0743–0753.
Article
CAS
Google Scholar
True JR, Haag ES. Developmental system drift and flexibility in evolutionary trajectories. Evol Dev. 2001;3:109–19.
Article
CAS
PubMed
Google Scholar
Newman SA. Inherency and homomorphy in the evolution of development. Curr Opin Genet Dev. 2019;57:1–8.
Article
CAS
PubMed
Google Scholar
Bonner JT. The evolution of evolution: seen through the eyes of a slime mold. Bioscience. 2015;65:1184–7.
Article
Google Scholar
Travisano M, Velicer GJ. Strategies of microbial cheater control. Trends Microbiol. 2004;12:72–8.
Article
CAS
PubMed
Google Scholar
Folse HJ 3rd, Roughgarden J. What is an individual organism? A multilevel selection perspective. Q Rev Biol. 2010;85:447–72.
Article
PubMed
Google Scholar
Gómez-Santos N, Glatter T, Koebnik R, Swiatek-Polatynska MA, Sogaard-Andersen L. A TonB-dependent transporter is required for secretion of protease PopC across the bacterial outer membrane. Nat Commun. 2019;10:1360.
Article
PubMed
PubMed Central
CAS
Google Scholar
Szadkowski D, Harms A, Carreira LAM, Wigbers M, Potapova A, Wuichet K, Keilberg D, Gerland U, Sogaard-Andersen L. Spatial control of the GTPase MglA by localized RomR-RomX GEF and MglB GAP activities enables Myxococcus xanthus motility. Nat Microbiol. 2019;4:1344–55.
Article
CAS
PubMed
Google Scholar
York JR, McCauley DW. The origin and evolution of vertebrate neural crest cells. Open Biol. 2020;10:190285.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pigliucci M, Müller G, editors. Evolution, the extended synthesis. Cambridge: MIT Press; 2010.
Google Scholar
Abouheif E, Wray GA. Evolution of the gene network underlying wing polyphenism in ants. Science. 2002;297:249–52.
Article
CAS
PubMed
Google Scholar
Müller GB, Newman SA. The innovation triad: an EvoDevo agenda. J Exp Zool B Mol Dev Evol. 2005;304:487–503.
Article
PubMed
Google Scholar
Müller GB. Homology: the evolution of morphological organization. In: Müller GB, Newman SA, editors. Origination of organismal form: beyond the gene in developmental and evolutionary biology. Cambridge: MIT Press; 2003. p. 51–69.
Chapter
Google Scholar
Müller GB. Why an extended evolutionary synthesis is necessary. Interface Focus. 2017;7:20170015.
Article
PubMed
PubMed Central
Google Scholar
Vavilov NI. The law of homologous series in variation. J Genet. 1922;12:47–89.
Article
Google Scholar
Sebé-Pedrós A, Irimia M, Del Campo J, Parra-Acero H, Russ C, Nusbaum C, Blencowe BJ, Ruiz-Trillo I. Regulated aggregative multicellularity in a close unicellular relative of metazoa. Elife. 2013;2:e01287.
Article
PubMed
PubMed Central
CAS
Google Scholar
Newman SA. Animal egg as evolutionary innovation: a solution to the "embryonic hourglass" puzzle. J Exp Zool B Mol Dev Evol. 2011;316:467–83.
Article
CAS
PubMed
Google Scholar
Tikhonenkov DV, Hehenberger E, Esaulov AS, Belyakova OI, Mazei YA, Mylnikov AP, Keeling PJ. Insights into the origin of metazoan multicellularity from predatory unicellular relatives of animals. BMC Biol. 2020;18:39.
Article
PubMed
PubMed Central
Google Scholar
Camley BA, Rappel WJ. Physical models of collective cell motility: from cell to tissue. J Phys D Appl Phys. 2017;50:113002.
Article
PubMed
PubMed Central
CAS
Google Scholar