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Abstract

Background: The de novo assembly of transcriptomes from short shotgun sequences raises challenges due to
random and non-random sequencing biases and inherent transcript complexity. We sought to define a pipeline for
de novo transcriptome assembly to aid researchers working with emerging model systems where well annotated
genome assemblies are not available as a reference. To detail this experimental and computational method, we
used early embryos of the sea anemone, Nematostella vectensis, an emerging model system for studies of animal
body plan evolution. We performed RNA-seq on embryos up to 24 h of development using Illumina HiSeq
technology and evaluated independent de novo assembly methods. The resulting reads were assembled using
either the Trinity assembler on all quality controlled reads or both the Velvet and Oases assemblers on reads
passing a stringent digital normalization filter. A control set of mRNA standards from the National Institute of
Standards and Technology (NIST) was included in our experimental pipeline to invest our transcriptome with
quantitative information on absolute transcript levels and to provide additional quality control.

Results: We generated >200 million paired-end reads from directional cDNA libraries representing well over 20 Gb
of sequence. The Trinity assembler pipeline, including preliminary quality control steps, resulted in more than 86%
of reads aligning with the reference transcriptome thus generated. Nevertheless, digital normalization combined
with assembly by Velvet and Oases required far less computing power and decreased processing time while still
mapping 82% of reads. We have made the raw sequencing reads and assembled transcriptome publically available.

Conclusions: Nematostella vectensis was chosen for its strategic position in the tree of life for studies into the
origins of the animal body plan, however, the challenge of reference-free transcriptome assembly is relevant to all
systems for which well annotated gene models and independently verified genome assembly may not be available.
To navigate this new territory, we have constructed a pipeline for library preparation and computational analysis for
de novo transcriptome assembly. The gene models defined by this reference transcriptome define the set of genes
transcribed in early Nematostella development and will provide a valuable dataset for further gene regulatory
network investigations.
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Background
Nematostella vectensis, the starlet sea anemone, offers
many advantages as a model system for the evolution of
animal developmental programs. As an anthozoan cni-
darian, it is strategically positioned as an outgroup to
Bilateria [1-3] and is well situated to reveal the early
steps in the evolution of the bilaterian body plan. Two
of these evolutionary steps are likely to include the for-
mation of a secondary body axis and a mesodermal germ
layer which are both essential, defining characteristics of
a bilaterian animal. Embryonic dorsal-ventral patterning
and mesodermal development have been studied in many
bilaterian models yet the origins of these significant body
plan innovations are not well understood. Initial studies
of gene expression in Nematostella and non-anthozoan
cnidarians have revealed that genes important to bilaterian
mesoderm specification are expressed in the endoderm
of the sea anemone, and suggests that the bilaterian
mesoderm may have originated from the endoderm of
diploblastic ancestors [4-6]. Genes encoding factors in-
volved in dorsal-ventral axis specification in Bilaterians
are likewise asymmetrically expressed in Nematostella,
indicating the possibility that a secondary axis was present
in the Cnidarian-Bilaterian ancestor [7,8]. Defining the
mechanisms controlling Nematostella development will
help address these questions about the early evolution-
ary steps that led to bilaterian body plans with three
germ layers and bilateral symmetry.
Gene regulatory networks (GRN) provide predictive

models of gene regulation, as in the several examples that
now exist for normal animal development (for example,
Drosophila [9], sea urchin [10,11], ascidians [12], chick
[13], and zebrafish [14]). To gain a comprehensive view of
the control system, it is necessary to identify all genes
whose products make up the regulatory network. This
applies to our current research efforts but is also generally
applicable to studies of virtually any regulatory system.
Advanced sequencing platforms now allow us to do this
through RNA-seq techniques. Yet, deep RNA-seq brings
challenges in analysis reflecting the scale and complexity
of transcriptomes, the primary problem being adequate
assembly of RNA-seq reads in order to define a reference
set of gene models [15-17]. Transcriptome assembly can
be achieved using a reference-based strategy, a de novo
strategy or a combination of the two. The main drawback
to using a genome reference for assembly is that it relies
on the quality of the reference genome being used [18].
This is a particular problem for emerging model systems
with recently completed genomes because misassemblies,
poor annotation and large gaps in coverage plague the
genome assemblies of all but a few of the major model
systems [19]. There is also a challenge in assigning reads
that align equally well to multiple places in the genome.
The aligner must decide to either exclude these reads
which can result in gaps or to choose which alignments to
retain which could lead to wrong assignments or predic-
tions of a transcript in a region that has no transcription.
A comprehensive GRN for early embryonic develop-

ment in Nematostella will enable researchers to investi-
gate the extent to which the bilaterian regulatory toolkit
is present in this representative cnidarian, down to the
level of precise signaling systems and transcription factor
cis-regulatory interactions. By harnessing the power of
high-throughput sequencing and perturbation techniques,
we aim to build the sea anemone GRN in an unbiased and
efficient manner that will serve as a GRN construction
pipeline for other model systems to follow.
The current Nematostella genome assemblies [20,21] fall

into the category of young genome models that are still
incomplete and contain gaps thus making the reference-
based method alone insufficient for our needs. Taking
these and all of the above complications into account
and considering our goal to define an experimental and
computational pipeline for emerging model systems, we
elected to use the de novo assembly approach. This
approach will be especially useful for evo-devo researchers
aiming to harness the power of next-generation sequencing
to bring their research into the genomics era; a trend
already underway, for example Parhyale [22], Oncopeltus
[23], sponge [24], and sea urchin [15].
The scale of reads, random and non-random sequen-

cing errors, and inherent transcript complexity due to
alternate transcription start sites or splice junctions all
pose challenges for de novo transcriptome assembly. In-
deed, the scale of the problem is only set to increase
with the expanding capacity for transcriptome sequencing
from advances in next-generation sequencing (NGS) plat-
forms. In the last few years several assembly algorithms
have been released to meet these challenges: Trans-ABySS
[25], SOAPdenovo [26], Velvet/Oases [27,28], and Trinity
[29]. The millions of short reads produced from NGS
platforms result in millions of overlapping sequences.
Short-read de novo assemblers exploit these overlaps to
reconstruct the original transcripts by using the de
Bruijn graph data structure, which encodes overlapping
k-mers as adjacent vertices. Assembly algorithms then
compute paths through the de Bruijn graph that corres-
pond to valid assemblies of the sequence reads.
The Trinity assembler breaks the sequence data into

many de Bruijn graphs in order to capture transcript
complexity resulting from alternative splicing, gene dupli-
cations or allelic variation [29]. Trinity consists of three
modules called Inchworm, Chrysalis, and Butterfly. Inch-
worm assembles the RNA-seq reads into transcripts and
reports only the unique portions of alternate transcripts.
Chrysalis clusters the Inchworm contigs so that each clus-
ter represents all known transcripts variants for each gene
or related genes and then constructs De Bruijn graphs for
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each cluster. All reads are segregated to one of these
separate graphs. Butterfly then processes these separate
graphs in parallel by tracing a path through each one
and reports full length transcripts separately for alter-
nate splice forms and paralogs. The Oases assembler
uploads a preliminary assembly created by Velvet, which
was originally designed for genome assembly. Oases
corrects this assembly using a range of k-mers to create
separate assemblies, which are then combined into one.
The longer k-mers perform better on high expression
transcripts and the shorter k-mers have an advantage
on low expression transcripts [28]. While the multiple
k-mer approach has been found to result in an increase
of longer transcripts, it can also lead to an accumula-
tion of incorrect assemblies or artificially fused tran-
scripts [30].
In this study we designed a next-generation sequen-

cing and analysis pipeline to produce a minimally biased
and quantitative reference transcriptome. The resulting
transcriptome represents the first 24 h of Nematostella
development and will be the basis for further gene regu-
latory network studies. The experimental and computa-
tional pipeline will be used by us and others to produce
transcriptomes for other model systems, particularly those
evo-devo models that do not yet have an annotated genome
but would benefit from an in depth molecular analysis.

Methods
Library prep
Nematostella vectensis adults following normal culture
at 18°C were spawned with a 9-h cycle of light at 25°C
in an incubator. Male and female spawning adults were
in separate bowls and egg sacs were removed to a fresh
bowl and fertilized with sperm from male bowls for
10 minutes. The egg sacs were then dejellied with a 4%
cysteine solution (pH 7.4) in 50% filtered sea water (FSW)
for 8 minutes and rinsed five times with 50% FSW. All
embryo processing was performed in an 18°C room and
the embryos were cultured from the time of fertilization
for 0, 6, 12, 18 or 24 h (five timepoints). An additional
24-h sample was prepared in the same way from a sep-
arate spawning event. Cultured embryos were trans-
ferred to an eppendorf tube, allowed to settle, gently
spun to a pellet and the supernatant removed, approxi-
mately 600 embryos per sample. The embryo pellet was
immediately immersed in 100 μl of lysis buffer from the
Invitrogen mRNA DIRECT kit (Invitrogen, Life Technolo-
gies, Grand Island, NY, USA) and homogenized with a
Kontes Pellet Pestle (distributed by Thermo Fisher Scien-
tific, Pittsburgh, PA, USA) attached to a 12 V/700 rpm
drill. Another 100 μl of lysis buffer was used to rinse the
Kontes Pellet Pestle tip and collected in the same tube.
Samples were then stored at −80°C until all timepoints
had been collected.
To thawed lysates, a third aliquot of 100 μl of lysis
buffer was added and then the normal protocol for the
Invitrogen mRNA DIRECT kit was followed using 50 μl
Dynabeads per sample and low adhesion microcentrifuge
tubes, following the manufacturer’s recommendations.
The mRNA yields were between 108 ng and 344 ng total
per sample. The mRNA was used as starting material for
the ScriptSeq V.1 kit from Epicentre (Epicentre Biotech-
nologies, Madison, WI, USA). A total of 9.0 μl of mRNA
corresponding to between 74 ng to 233 ng per sample
was combined with 1.0 μl of a 1:10 dilution of External
RNA Controls Consortium (ERCC) spike-in control RNA
for the first reaction (available from Invitrogen/Life
Technologies). The protocol was followed exactly, using
12 cycles total of PCR in the amplification step with
Phusion High Fidelity polymerase (available from Therm
Scientific) and barcoded Illumina-compatible primers 1 to
6 from Epicentre.
The libraries were size selected with a 2% Pippin prep

gel (from Sage Science, Beverly, MA, USA) for 450 bp and
checked on a Agilent 2100 Bioanalyzer with a high sensi-
tivity DNA chip (from Agilent Technologies, Santa Clara,
CA, USA) and then by qPCR. The samples were com-
bined and run on a single lane of the Illumina High Seq
1000 with version III chemistry with 200 cycles of paired
end sequencing plus indexing reads. All raw read files are
available on the Woods Hole Data Archive at http://hdl.
handle.net/1912/5613, DOI [DOI:10.1575/1912/5613].

Computational methods
Quality control
Quality control was implemented using a combination
of Bowtie2 (version 2.0.0-beta6), Basic Local Alignment
Search Tool (BLAST), btrim (build date 9 September 2011),
and the FASTX-Toolkit. First, we computed overrepre-
sented k-mers in the raw sequence data and ran BLAST
against the set of non-redundant (nr) sequences from the
National Center for Biotechnology Information (NCBI).
The top several BLAST hits were analyzed for homology
with ribosomal or mitochondrial RNA. Using the BLAST
data, we constructed a catalog of rRNA and mtRNA
sequences which could serve as a reference set to filter
the overly abundant non-protein coding RNA prior to
de novo transcriptome assembly. A Bowtie2 index was
built from the rRNA and mtRNA sequences ofMontastraea
franksi, Savalia savaglia, Actiniaria, Nematostella vectensis,
and Clathrina. Sequence reads successfully aligning by
Bowtie2 to this set were removed. The overrepresented
k-mers also contained adapter sequences that remained
in the sequence. We retrieved the exact Illumina adapter
sequences and used the software tool btrim to clip adapters.
Sequence reads demonstrating low complexity (containing

only one or two unique bases) are likely due to technical
artifacts and were removed. Next, the GC content
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distribution was computed for the set of all reads. GC
content biases in the first 13 bases of Illumina RNA-seq
data are known to exist due to random hexamer priming
[31]. This bias may cause an imbalance in read coverage
and persist through the assembly process, which can affect
the quality of assembly and quantification levels. Because
we had extremely high sequence coverage, we removed
the bias by simply trimming the start of the reads. Using
the FASTX-Toolkit, we removed the initial 13 bases from
the reads at each timepoint. Finally, btrim was also used
to adaptively trim low quality bases from the end of the
read. Adaptive trimming is performed by sliding a window
of 5 bp from the end of the read to the start, removing
bases and shifting the sliding window by 1 base if the aver-
age quality score is less than 30 until the average quality
score is at least 30.

Digital normalization, Velvet and Oases
Digital normalization is a method to reduce the total
number of reads to be assembled, thereby also reducing
the computing power and time required for assembly. It
preferentially removes high abundance reads but retains
read complexity in order to remove errors but preserve
low abundance transcripts prior to assembly. All links
to digital normalization software are available electron-
ically through http://ged.msu.edu/papers/2012-diginorm/.
Raw paired-end read files were first interleaved into
pairs using a python script, available at http://github.com/
ged-lab/khmer/tree/2012-paper-diginorm/sandbox. Then,
three rounds of digital normalization were applied to re-
move overabundant and erroneous reads. These depend
on the khmer software package, available at http://
github.com/ged-lab/khmer/. The khmer software also
relies on the screed package for loading sequences,
available at http://github.com/ged-lab/screed/ (khmer
and screed are ©2010 Michigan State University, and
are free software available for distribution, modification,
redistribution under the BSD license). The digital normal-
ized files were assembled with Velvet (version 1.2.03) and
Oases (version 0.2.06). The details of the execution com-
mands are available in Additional file 1. The most current
recommendations for use of digital normalization for de
novo transcriptome assembly recommend using only one
round of normalization instead of three. Fewer low abun-
dance transcripts may be lost by foregoing further rounds
of digital normalization at the expense of increased com-
puting time and power to assemble the greater number of
remaining reads.

Trinity assembly and quantification
The 20 August 2011 release of the Trinity pipeline was
run on the reads remaining after quality control (http://
trinityrnaseq.sourceforge.net/). We ran Trinity with the
options to use eight CPU cores and the RF library type
to reflect the directionality of the sequence reads (full
execution commands are given in Additional file 2). The
assembled transcriptome is available on the Woods
Hole Data Archive at: http://hdl.handle.net/1912/5613,
[DOI:10.1575/1912/5613]. Bowtie was then used to align
the post quality control sequence reads to the transcrip-
tome assembly and the ERCC spike-in control sequences.
We then computed (1) the set of concordant paired-end
mapped sequence pairs and (2) the set of all mapped
sequences for both the transcriptome and the ERCC
controls. Fragments per kilobase of exon per million
fragments mapped (FPKM) values were computed for
the transcriptome assembly transcripts and the ERCC
controls using RSEM (version 1.2.0). To quantify the
expression of transcripts in terms of molecules we com-
puted the dose–response curve by plotting FPKM
values versus the known concentration of each ERCC
spike-in for each timepoint. A set of ordinary least
squares (Additional file 3) and robust linear regressions
(Figure 1) [32] were computed, and we observed that
the set of concordant mapped reads yielded higher R2

(Table 1) than the set of all mapped reads, and thus, we
used the concordant mapped reads for downstream
analyses. Using the fitted line, we inferred the number
of molecules present for each Trinity assembled tran-
script, in each timepoint.

Blast2GO
To compute overexpressed GO terms in our transcrip-
tome, we used BLASTx 2.2.26+, BLOSUM62 similarity
matrix, Blast2GO database version August 2011, and pipe-
line B2G4Pipe version 2.3.5. The definition of each GO
term is determined by the GO Consortium: http://www.
geneontology.org/, and can be found using the EMBL-
European Bioinformatics Institute QuickGO: http://www.
ebi.ac.uk/QuickGO/, or the Gene Ontology Normal Usage
Tracking System, GONUTS: http://gowiki.tamu.edu/wiki/
index.php/Main_Page. Definitions for all GO terms pre-
sented in this paper can be found in Additional file 4.

Results
Library preparation and quality control of reads
In theory, RNA-seq can catalog all expressed transcripts
as complete mRNA sequences. To determine the set of
transcripts expressed from fertilization to gastrulation,
we chose to sample five timepoints during the first 24 h
of Nematostella development: 0, 6, 12, 18, and 24 h after
fertilization (Figure 2A). First, 600 embryos per timepoint
were immediately homogenized and lysed with lysis buffer
from the Invitrogen mRNA DIRECT kit and stored at
−80°C until all samples had been collected. Lysing imme-
diately was important, as freezing the embryos as a pellet
results in significant RNA degradation (Antje Fischer,
Marine Biological Laboratory, Woods Hole, MA, USA,
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Figure 1 Standard curves for RNA spike-in control standards. RNA spike-in control standard curves for (A) 0 h (B) 6 h (C) 12 h (D) 18 h
(E) 24 h and (F) all timepoints. The x-axis shows the fragments per kilobase of exon per million fragments mapped (FPKM) values (reads) and
the y-axis shows the known concentrations of each molecule, in molecules per embryo. The blue line and grey shadow represent the best-fit
line using robust linear regressions and standard error, respectively.
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personal communication). Next, mRNA was positively
selected with the Invitrogen mRNA DIRECT kit, which is
a magnetic bead-based method. We tried an alternate
mRNA enrichment method with total RNA extraction
combined with negative selection for ribosomal RNAs,
but the yields were too low from total RNA extraction
with a Qiagen total RNA kit even for use with the low
input version of the RiboZero kit from Epicentre. This
is probably due to low RNA levels or difficult to extract
RNA (not an uncommon problem in embryo systems)
Table 1 Spike-in standard curve R values for the ordinary
least squares regression

Time R2

Hour 0 0.973

Hour 6 0.959

Hour 12 0.969

Hour 18 0.957

Hour 24 0.964

All hours 0.963
in Nematostella embryos, so for this step in the pipeline
the alternate negative selection method may work better
for species such as Xenopus, which have large amounts
of RNA in their eggs. Our research group has more re-
cently used this alternate method successfully for devel-
oping embryos of the slipper snail, Crepidula fornicata.
The polyA-RNA enriched sample was then processed

with the Script Seq kit, version 1, from Epicentre. The
main advantages of this kit are the resulting directional
reads, short preparation time (4 h), and low input require-
ments (as low as 50 ng mRNA). The adapter-ligated li-
braries were then size selected for uniformity at 450 bp
using a Pippin Prep gel electrophoresis apparatus from
Sage Science and combined in one lane on an Illumina
HiSeq 1000 to produce 2 × 100 bp paired-end reads.
The sequencing run produced 238.5 million total raw

reads (1.19E + 08 pairs; Table 2), yielding far more than
20 GB of data. Quality control was then implemented in
two phases (Figure 2B). The first phase removes adapter
sequence contamination and ribosomal and mitochon-
drial RNA sequence. The second phase filters low com-
plexity artifacts that may have resulted from technical



Figure 2 Experimental and computational workflow. (A) (1) Harvesting embryos after fertilization and subsequent aging all took place at 18°C.
(2) After lysis and homogenization of embryos using Invitrogen lysis buffer and a pestle, lysates were stored at −80 degrees. (3) Protein-coding
mRNA species were selected directly using the mRNA DIRECT kit from Invitrogen. (4) Sequencing libraries were prepared using the ScriptSeq kit from
Epicentre/Illumina. The kit has four major steps: RNA fragmentation, cDNA synthesis, 3’-terminal tagging, and PCR amplification. Separate
index tags were added to each timepoint during PCR amplification. (5) Libraries were size selection using a 2% pippin prep from Sage Science
to 450 bp. (6) Quantification of libraries with Bioanalyzer and qPCR. (7) All samples were pooled into a single lane. (8) Sequencing was
performed on an Illumina HiSeq 1000 with version 3 chemistry. (B) (1) Wet-lab experimental methods to isolate, prepare, and sequence the
RNA result in raw reads. (2) Quality control removes adapter sequences, artifacts, ribosomal and mitochondrial contaminants; trims the GC-content
bias; and adaptively trims the low quality sequence bases. (3) De novo transcriptome assembly using Trinity or Velvet-Oases. (4) The
transcriptome assemblies are compared using a variety of metrics. (5) Reads are normalized prior to quantification and other downstream
analyses. Reads for specific transcripts are normalized based on fragments per kilobase of exon per million fragments mapped (FPKM) and
spike-in measurements.
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failures during sequencing, removes low quality bases
from the ends of reads, and trims the GC-content bias
sequence bases from the start of the each read (see
Methods section for more details). Both quality control
phases may remove reads entirely or a subset of bases. If
the length of a read is less than the k-mer length of the
de novo assembler it cannot be used for assembly and is
removed from the read set. These filters may therefore
result in read fragments that have one of the paired
reads removed while the other passes quality control.
The raw sequence dataset contains 24 billion bases in
119 million paired directional sequence reads. After quality
control phase 1 (QC phase 1), 71.7% of the bases and
70.3% of the paired sequence reads remained (Table 2).
Phase 1 removed one of the pairs from 1.3 million frag-
ments effectively introducing unpaired sequences into the
read set. After QC phase 2, 59.1% of the original sequence
bases remained and 67.5% of the original paired sequence
reads remained. A total of 5.4 million unpaired sequences
remained after QC phase 2.



Table 2 Quality control read attrition

Timepoint Raw paired end reads QC step 1 % QC step 2 %

0 h 1.74E + 07 1.29E + 07 74.29 1.24E + 07 71.38

6 h 1.98E + 07 1.46E + 07 73.76 1.40E + 07 70.95

12 h 1.44E + 07 9.17E + 06 63.48 8.76E + 06 60.68

18 h 2.88E + 07 1.96E + 07 68.25 1.89E + 07 65.65

24 h-A 3.61E + 07 2.57E + 07 71.05 2.46E + 07 68.22

24 h-B 2.75E + 06 1.87E + 06 67.99 1.77E + 06 64.31

Total 1.19E + 08 8.39E + 07 70.31 8.05E + 07 67.51
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De novo assembly with Trinity assembler
Assembling a transcriptome from short reads is computa-
tionally challenging and several methods exist for assem-
bly using an annotated genome as a reference, assembling
the reads de novo without a genome reference, or a com-
bination of the two. Due to the aforementioned difficulties
with using the current Nematostella genome for assembly,
we chose to compare two alternate pipelines which both
use de novo assembly exclusively. The first uses the Trinity
platform, which has been shown to recover more full-
length transcripts across a range of levels at a sensitivity
level comparable to assemblers that use a genome refer-
ence [33,34]. Additionally, Trinity can recognize alternate
splice forms as belonging to the same gene and keep them
together with the same prefix. Sequence reads that passed
quality control were assembled into 119,911 contigs by
Trinity (Table 3); 14.85% of assembled contigs were more
than 1,000 bp long (Figure 3). The total alignment rate for
the Trinity assembly was 85.90% (Table 4).
Determining adequate coverage of transcriptomes is

more challenging than determining coverage of genomes
because every transcript species (including splice variants
or those using alternate transcription start sites) is present
at a different level across a large range. Several studies
have used an independent assembly of randomly selected
subsets of their reads to compare the rate of new tran-
script discovery, determine the lower abundance limit of
detection and compare the average length of isotigs.
While analyzing the sea urchin embryonic transcrip-
tome, Tu et al. compared a 20 M read subset with a 2 M
read subset and a 0.2 M read subset, and found that
Table 3 No. of distinct transcripts passing filters

Type

Total number of assembled transcripts

≥1 BLASTx hit (Nematostella vectensis), e <5e-5

≥1 BLASTx hit (non-redundant), e <5e-5

≥1 BLASTx hit (non-redundant) and 80% similarity

≥1 BLASTx hit (Nematostella vectensis) and 80% similarity

Molecules per embryo (MPE) >100

MPE >100, ≥1 BLASTx hit (non-redundant)

Transcript families from transcripts with MPE >100, ≥1 BLASTx hit (non-redun
20 M reads were sufficient to reliably detect levels of
transcripts at 400 molecules/embryo, which they esti-
mate as the lower limit for proteins of developmental
significance (such as transcription factors, which may
be functionally relevant at levels as low as 10 copies of
transcript per cell) [15]. In their analysis of the milk-
weed transcriptome, Ewen-Campen et al. created eight
subsets of reads, assembled them separately and used
BLASTx to compare gene discovery rates [23]. They
found that the rate of new transcript discovery plateaued
at 1.5 M reads, although the N50 isotig length continued
to increase when using 2 M to 17 M read subsets. After 2
rounds of quality control filtering of our reads, we were
left with 80,537,812 paired and 5,362,854 unpaired reads,
a depth which has been shown to produce good sensitivity
in these other systems for identifying all protein-coding
transcripts expressed in the early embryo.
To restate, these previous studies indicate that with

the volume of reads coming off the latest Illumina plat-
forms (250 million to 400 million reads/lane), and only
multiplexing 6 samples in a lane, we should be beyond
the necessary coverage to represent all relevant regula-
tory transcripts. The best indication of the quality of our
assembly is that we have been able to use it as a refer-
ence to map reads from more recent experiments in our
lab at a median 93% rate (with 90% of samples mapping
90% of their reads to the Trinity-assembled reference).

Digital normalization followed by Oases assembly
To evaluate more closely the quality of our de novo tran-
scriptome assembly, we compared Trinity with an alternate
No.
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Figure 3 Distribution of contig length for assembled reads. Contig length distribution from Trinity-assembled reads. Assembled reads that
passed quality control formed 119,911 contigs where 14.85% were more than 1,000 bp long.
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strategy that combines a digital normalization step [17]
with the assemblers Velvet [27] and Oases [28]. Digital
normalization is a computational normalization method
that preferentially removes high abundance reads but
retains read complexity in order to remove errors and
preserve low abundance transcripts prior to assembly.
The quality controlled reads were assembled using Velvet
and Oases and then mapped back to the resulting assem-
bly (commands in Additional file 1). The main advantage
of this method is it greatly decreases the computing
power and time required to process millions of reads.
Table 4 Trinity assembly compared to digital normalization/V

T

Total fragments 87,2

Aligned concordantly 0 times 23

Aligned concordantly 1 time 28

Of reads aligning concordantly or discordantly 0 times:

Aligned discordantly 1 time

Total mates

Aligned 0 times 24

Aligned exactly 1 time 4

Aligned >1 times 13

Overall alignment rate
We also tested the Amazon Elastic Cloud Computing
Service (Amazon EC2), http://aws.amazon.com/ec2/, to
perform the digital normalization and Velvet-Oases
assembly. This method proves to be a great alternative
to using a home institution’s core computers if the in-
stitution does not have sufficient computing power for
running an assembler or if the computers are expensive
to rent, slow or unreliable. Whereas the computation of
Trinity required over 50 h and 100 GB of RAM in
addition to the quality control steps, the pipeline using
digital normalization, Velvet and Oases can all be run in
elvet/Oases

rinity assembly Digital normalization, Oases-Velvet

09,130 (100.00%) 87,209,130 (100.00%)

,101,349 (26.49%) 35,552,373 (40.77%)

,325,506 (32.48%) 30,552,963 (35.03%)

1,826,073 (7.90%) 7,539,150 (21.21%)

42,550,552 56,026,446

,594,154 (57.80%) 31,100,316 (55.51%)

,660,328 (10.95%) 11,909,789 (21.26%)

,296,070 (31.25%) 13,016,341 (23.23%)

85.90% 82.17%

http://aws.amazon.com/ec2/
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a single day using an XL computer rented from Amazon.
We found that this alternative assembly approach gave
competitive results when mapping our Nematostella
vectensis RNA-seq reads. The overall mapping success
rate was 82.17% for digital normalization-Oases as com-
pared to 85.90% for Trinity (Table 4).

Quantification of Trinity-assembled transcriptome using
known RNA ‘spike-ins’
A key component of our de novo transcriptome pipeline
is a method to obtain absolute quantitative information
for each transcript using external standards or ‘spike-ins’,
that is, control RNAs of known concentration. Before
absolute quantification of inferred transcripts can be
performed, the dynamic range and transcript detection
limits must be evaluated using spike-ins. For this we
employed the ERCC RNA spike-in set as recommended
by the National Institute of Standards and Technology
(NIST) [35-37]. First, we computed the properly mapped
read alignments from quality controlled sequence read
pairs to the ERCC spike-in reference sequences for each
embryological timepoint. Quantification of spike-in tran-
scripts was then performed using RSEM [38]. Read
alignments that were not concordant with directionality
constraints were not considered for quantification. We
then compared the known concentration of each ERCC
spike-in transcript to the RSEM calculated FPKM values.
The dose–response curve for each timepoint containing
the known concentrations and FPKM values for the
spike-ins were plotted. We computed an ordinary least
squares (Additional file 3) and robust linear regression
to determine the best fit (Figure 1) [32]. The robust lin-
ear regression provided a larger detection range and was
used to compute absolute quantification for the assem-
bled transcripts. In total, we computed 9,516 transcripts
expressed above 0 molecules per embryo and 8,154
transcripts expressed above 100 molecules per embryo
(Figure 4). When restricting the set of transcripts to
those with at least 1 BLAST hit against nr, we observed
6,169 transcripts expressed above 100 molecules per
embryo (Table 3).

Blast2GO analysis reveals genes involved in gene
regulation
We used Blast2GO to quantify how many transcripts from
the Trinity transcriptome fell into well defined gene ontol-
ogy (GO) categories over all time periods sampled [39]. A
sample of the top overexpressed GO terms computed
using Fisher’s exact test from the topGO package version
2.10.0 for R [40] are visualized in Figure 5A. GO terms
belong to a top level designation of biological process
(BP), cellular component (CC), or molecular function
(MF) where the titles of the GO terms are in reference
to the top level designation; for example, ‘nucleus’ refers
to the location of the gene product in the nucleus while
‘gene expression’ refers to a gene product involved in
the process of converting gene sequence into RNA or
proteins. Definitions for all of the GO terms in Figure 5
can be found in Additional file 3. In order to understand
how many transcripts are potentially a part of the em-
bryonic gene regulatory control system, we focused on
terms enriched for transcription factors and signaling
pathway components (Figure 5B). Nearly 1,000 tran-
scripts combined fell into the 2 transcription factor cat-
egories while nearly 1,500 transcripts combined to make
up signaling molecules, their receptors, modulators and
transducers. Taken together, these 2,500 transcripts pro-
vide an estimate of the number of regulatory factors
(transcription factors, ligands, receptors, modulators and
transducers) present in the Nematostella developmental
gene regulatory network.

Transcript family analysis
The transcripts inferred by the Trinity assembler were
tested for sequence similarity with known genes. Specif-
ically, the sequence of each transcript was translated
and BLASTx was run using the NCBI non-redundant
RefSeq database of protein sequences (nr). We combined
sequences sharing at least 1 BLAST result with an e-value
<5e-5 and a percent identity >80% into a transcript family.
The e-value threshold filtered out low confidence BLAST
results, while the percent identity filter requires a large
percentage of the transcript to match. We systematically
tested multiple identity thresholds and found that 80%
sequence match yielded a realistic transcript family
distribution. Given the natural tradeoff between identi-
fication of transcript variants versus paralogous genes,
overly stringent requirements of similarity result in an
underrepresentation of true homologous relationships;
conversely, when similarity thresholds are set too low,
distinct transcripts are erroneously grouped together.
Because the assembled Nematostella transcripts are also
included in nr, the sequence similarity threshold is re-
quired to be set high. The transcript families therefore
represent a mixture of fully assembled gene transcripts,
pieces of transcripts, paralogs, or multiple splice forms,
entirely compatible with our overarching goals. For
BLAST analysis with sequence databases of very differ-
ent sizes (as in our case, nr vs Nematostella) e-values
are not an appropriate measure of similarity; in this case
a similarity threshold is more informative. Thus, at a
similarity threshold of 80% we were able to annotate
48,235 transcripts from the nr database, compared to
only 47,193 transcripts when using the Nematostella
genome alone (Table 3). To do transcript family analysis
we used the BLAST hits from the nr database. We
inferred 13,293 total transcript families from the 61,835
assembled transcripts with at least 1 BLAST hit. When



Figure 5 Gene ontology (GO) analysis: GO term category distribution. (A) Transcripts were processed with Blast2GO and the number of annotated
transcripts in each of the selected GO categories is shown for biological process (BP), cellular component (CC), and molecular function (MF). (B) A closer
look at genes likely important for gene regulation in the categories of cell-cell signaling, molecular transducer, nucleic acid binding activity (transcription
factors), protein binding activity (transcription factors), signaling receptors, receptor regulators, and sequence-specific DNA binding transcription factors.
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restricting the transcript family analysis to transcripts
expressed over 100 molecules per embryo (MPE) and at
least 1 BLAST hit (MPE >100, ≥1 BLAST hit) across the
5 timepoints, we observed a total of 4,055 transcript
families from the 6,169 transcripts passing the filter
(Table 3). These computations likely represents an under-
estimate of the true number of genes expressed due to an
inability to assemble very lowly expressed transcripts and,
in a few cases, grouping paralogous genes together.
As an example of using the quantitative transcriptome

for transcript family analysis, we located the transcripts
corresponding to Notch as identified by BLAST. There
were three transcripts in this transcript family, one of
which is too short and too lowly expressed to be relevant,
while the other two are nearly identical and apparently full
length. As shown in Figure 6, total Notch molecules per
embryo increased from virtually zero copies at 0 h and
6 h, reflecting little or no maternal and early zygotic
expression, to significant levels by 12 h, and thence to
1,000 copies at 24 h. A previous study has shown that
Notch protein can be seen by in situ as early as 20 h,
however, that same study only detected Delta-Notch
signaling pathway function at later developmental stages
[41]. We also see low levels of a putative Delta-like
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Figure 6 Temporal quantitative expression of Notch. Notch transcript f
to Notch via Basic Local Alignment Search Tool (BLAST) were grouped into
expressed and the two others nearly identical). The family’s summed expre
sampled timepoints.
ligand, though we cannot conclude whether it is
expressed at functional levels, nor can we make the sim-
plistic conclusion that because both ligand and receptor
are present the signaling pathway is functional. Rather our
data suggest further investigation is merited, as also stated
in Röttinger et al. [42], the most systematic study of early
Nematostella endomesoderm specification to date.
An estimation of the percentage of the genome tran-

scribed during these time periods was computed by tak-
ing the length of the longest transcript in each transcript
family and dividing that by the length of the genome
taken from the estimate in the Nematostella genome
paper (450 Mbp) [21]. An important caveat is that this is
likely an underestimate because some transcripts are
not full length. The percent of the genome transcribed
above 100 molecules per embryo according to this cal-
culation is 0.368%. The average transcript length for all
assembled transcripts is 622.53 bp. When only taking
transcripts expressed after spike-in control correction
above 0 molecules per embryo, the average transcript
length is 456.18 bp. By timepoint, the average of assem-
bled and expressed transcripts is: (0 h) 479.95 bp, (6 h)
487.82 bp, (12 h) 490.54 bp, (18 h) 494.03 bp, and (24 h)
441.29 bp.
2 18 24
e point

ression of Notch

amily expression over time. Transcripts that were found to be similar
a transcript family (three transcripts total, one very short and lowly
ssion in molecules per embryo is shown for all five
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Discussion
The goals of the project discussed in this paper were
(1) to identify all the protein-coding genes expressed
during the first 24 h of Nematostella vectensis develop-
ment and in so doing (2) to detail a modern, cost-
effective, efficient and quantitative series of experimental
and computational methods that together make up a
transcriptome pipeline for non-model organisms. A key
component of our pipeline is the inclusion of NIST
RNA spike-in standards for quantification. This allows
us to get around the problem of normalizing data to
estimate gene expression levels [43], and provides an
absolute measure of transcript abundance per embryo.
Many evolutionary developmental biology ‘evo-devo’

research projects have revealed candidate genes in non-
model organisms leading to intriguing hypotheses regard-
ing the conservation, or conversely, invention of pathways
controlling development [5,44,45]. However, to answer
the questions these hypotheses have generated, it is not
only the gene homology, presence, absence or spatial
localization that needs to be known. To say that a devel-
opmental program or subcircuit has been conserved or
evolved in a specific way, the cis-regulatory network
connections between all the regulatory genes involved
must be at a minimum known and validated. Candidate
genes identified from BLAST analysis will typically only
make up a small fraction of the regulatory genes in any
pathway. With the advent of next-generation sequen-
cing platforms, identifying all the protein coding genes
expressed at any given time during embryonic development
is now within the reach of any model system where em-
bryos can be acquired. The lack of a sequenced, annotated
genome is no longer a major setback to GRN analysis.
The use of polyadenylated spike-in RNAs provides quan-

titative information on the absolute abundance of tran-
scripts per embryo. It is important to note the difference
between this method of standardization and normalization
approaches. The ERCC spike-ins allow us to build a stand-
ard curve, in our case a 92-point standard curve. As the
quantities of the spike-ins are known, this allows us to infer
from the standard curve absolute quantities. Note that
since spike-ins are added at the beginning of the library
preparation procedures, any variation in preparation effi-
ciencies (that is, technical noise) is in theory accounted for
by the spike-ins. Thus, even without absolute quantitation,
the use of spike-ins allows direct comparison between
samples without the distorting effects of normalization
to minimize the effects of technical variation. Further,
quantitation by spike-ins also allows us to know the
limits of our ability to detect and quantify lowly expressed
transcripts. Since low expressed transcripts account for
many of the problems in bioinfomatics analysis, our 100
molecules per embryo cut-off allows us to focus our
analysis on those transcripts expressed at biologically
relevant levels which are also within the linear range of
our standard curve. Increasing the sequencing depth
and being less conservative with mapping stringency
could improve our ability to quantify these lowly expressed
transcripts.
This transcriptome pipeline is part of a larger GRN

construction pipeline that we are in the process of defin-
ing empirically. A visualization of the proposed workflow
for constructing a GRN starting from a sequenced and
assembled transcriptome is shown in Figure 7. The tran-
scriptome is the starting point and foundation of the
GRN because it represents all the transcripts present in
the scope of the network. The next datasets to be produced
are: a high-density, quantitative RNA-seq timecourse which
will be mapped to the full transcriptome, for the purpose
of high resolution covariance analysis; a ‘Perturbation-seq’
dataset where RNA-seq is used on embryos treated with
drugs against components of major signaling pathways;
and a genome-wide sequencing-based search for cis-
regulatory elements using either FAIRE-seq [46] or DNase
I hypersensitivity. A custom computational comparison
of these datasets will produce an interactome with clus-
ters representing transcripts that change together from
timepoint to timepoint or after a perturbation. More
sensitive investigation of spatial expression, coexpression
and perturbation expression (after morpholino treatment)
will take the interactome to the level of a preliminary
GRN. Finally, cis-regulatory analysis using bacterial arti-
ficial chromosome (BAC) recombination to evaluate
subcircuit function will produce a verified GRN with
predictive power.

Conclusions
The embryo of the sea anemone Nematostella vectensis
provides an important evo-devo model for understand-
ing early animal development, particularly in relation to
the question of how initial patterns of differential gene
expression emerge along orthogonal body axes. Given
Nematostella’s position among cnidarians and the mo-
lecular evidence thus far, it is possible that a bilaterally-
symmetric pattern formation network stretches back to
before the Cambrian to a time preceding the Cnidaria-
Bilateria bifurcation. However, to make this argument
we need a mechanistic understanding of early develop-
ment in both cnidarian and canonical bilaterian models
systems. Moreover, in light of the compare-and-contrast
nature of these studies, we need to move away from a
candidate gene approach as such methods clearly bias
towards the ‘discovery’ of similarities as opposed to
differences between regulatory networks. With the ad-
vent of genomics, we can now attempt exhaustive de
novo approaches to define regulatory networks, though
challenges in handling RNA-seq data sets still exist. In
this report, we have undertaken preliminary steps in



Figure 7 Gene regulatory network (GRN) construction pipeline flowchart. A visualization of how an embryonic transcriptome fits into the
workflow for constructing a validated GRN. The transcriptome forms the foundation of the GRN because it represents all the transcripts present
in the scope of the network. The next immediate datasets to produce are represented at the second level: a high-density, quantitative RNA-seq
timecourse which will be mapped to the full transcriptome, for the purpose of high resolution covariance analysis, a ‘Perturbation-seq’ where
RNA-seq is used on embryos treated with drugs to major signaling pathways, and a global sequencing effort for cis-regulatory elements using
either FAIRE-seq or DNase hypersensitivity. Computational analysis of these datasets will produce an interactome with important nodes
highlighted. More sensitive investigation of spatial expression, coexpression and perturbation expression (after morpholino treatment) will take
the interactome to the level of a preliminary GRN. Finally, cis-regulatory analysis of subcircuit function will produce a verified GRN.

Tulin et al. EvoDevo 2013, 4:16 Page 13 of 15
http://www.evodevojournal.com/content/4/1/16
defining the Nematostella gene regulatory network for
early pattern formation by building a comprehensive
model of gene expression through 24 h of development.
This quantitative reference transcriptome will help us
identify, in a minimally biased manner, the most relevant
genes to the pattern formation control system. The regula-
tory network for pattern formation in Nematostella will in
turn provide a powerful basis for comparison with early
development networks from canonical bilaterians.
In summary, we have presented our quantitative

reference transcriptome for Nematostella vectensis early
embryogenesis, which is available on the Woods Hole Data
Archive at http://hdl.handle.net/1912/5613 [DOI:10.1575/
1912/5613]. Additionally, our de novo transcriptome pipe-
line, based on the Trinity assembler, has been designed to
meet the needs of the evo-devo community.
Additional files
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