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Gene expression in bryozoan larvae suggest a
fundamental importance of pre-patterned
blastemic cells in the bryozoan life-cycle

Judith Fuchs', Mark Q Martindale® and Andreas Hejnol**"

Abstract

Background: Bryozoa is a clade of aquatic protostomes. The bryozoan life cycle typically comprises a larval stage,
which metamorphoses into a sessile adult that proliferates by asexual budding to form colonies. The homology of

of bryozoan life cycle stages.

bryozoan larvae with other protostome larvae is enigmatic. Bryozoan larvae exhibit blastemic tissues that
contribute to build the adult during morphogenesis. However, it remains unclear if the cells of these tissues are
pre-determined according to their future fate or if the cells are undifferentiated, pluripotent stem cells. Gene
expression studies can help to identify molecular patterning of larval and adult tissues and enlighten the evolution

Results: We investigated the spatial expression of 13 developmental genes in the larval stage of the
gymnolaemate bryozoan Bugula neritina. We found most genes expressed in discrete regions in larval blastemic
tissues that form definitive components of the adult body plan. Only two of the 13 genes, BnTropomyosin and
BnFoxAB, were exclusively expressed in larval tissues that are discarded during metamorphosis.

Conclusions: Our results suggest that the larval blastemas in Bugula are pre-patterned according to their future
fate in the adult. The gene expression patterns indicate that some of the bryozoan blastemas can be interpreted to
correspond to homologous adult tissues of other animals. This study challenges an earlier proposed view that
metazoan larvae share homologous undifferentiated “set-aside cells”, and instead points to an independent origin
of the bryozoan larval stage with respect to other lophotrochozoans.

Background

Bryozoa (Ectoprocta) is a monophyletic group of sessile,
colonial invertebrates and includes over 6,000 species in
aquatic habitats worldwide [1]. Bryozoan life history,
reproduction and anatomy are so fundamentally differ-
ent from other metazoan groups (for example they lack
typical circulatory structures or nephridia and the ner-
vous systems of larvae and adults are unique), that tradi-
tional morphological investigations and the fossil record
failed to clarify their evolutionary history. Bryozoa
belong to Lophotrochozoa [2], but their phylogenetic
position within the group is still ambiguous [3-6].
Recently, a few molecular studies indicated a close rela-
tionship of bryozoans with the clade Entoprocta +
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Cycliophora, but with low support [7,8]. Within Bryo-
zoa, three major clades are recognized, Gymnolaemata
(Eurystomata), Stenolaemata (Cyclostomata), and Phy-
lactolaemata, but the phylogenetic interrelationships of
these groups remain controversial [9-11].

Bryozoans have indirect development and their life
cycle includes a sexually produced larval stage as well as
asexual reproduction by cloning to give rise to colonial
adult forms [12]. The most species rich bryozoan clade
with over 5,000 species, the Gymnolaemata, has evolved
a fascinating diversity of reproductive mechanisms and
larval forms. Less than 20 species release their eggs
directly into the surrounding water, where they develop
into the well known cyphonautes larvae, planktotrophic
(feeding) larvae with characteristic shells. Even fewer
species produce shelled larvae with a non-functioning
gut called pseudocyphonautes. The great majority of
gymnolaemates, however, have evolved brood protection
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and their embryos develop into lecitotrophic (non-feed-
ing) “coronate” larvae. Coronate larvae usually lack both
a shell and a gut, but traces of a non-functioning gut
were observed in some species, which was interpreted as
a vestigial gut [13,14]. Despite the above outlined differ-
ences among gymnolaemate larvae, they usually share a
set of morphological characters including transitory lar-
val structures such as larval muscles and nerves (such as
an apical organ), a glandulo-sensory organ (pyriform
organ), internal cells, as well as blastemic cells that give
rise to definitive adult tissues [14]. During a drastic meta-
morphosis, the transitory larval structures are discarded
and only a single species is known to retain its larval gut
in the adult [15]. Typically, all adult structures (for exam-
ple gut, nervous system) are built de novo from the blas-
temic cells, which are found in various positions in the
larvae and can give rise to different adult structures dur-
ing metamorphosis in individual gymnolaemate species
[16,17]. However, some authors propose that only ecto-
dermal and mesodermal cells are involved in adult body
plan formation from the larva, and this process mirrors
the asexual budding process, which involves proliferation
of the polypide (gut and lophophore) from the pluripo-
tent body wall [12,14,18,19].

A comprehensive cell fate map does not exist for any
species of bryozoan, so it is unknown if the blastemic
cells in the larvae are undifferentiated, pluri- or multipo-
tent set-aside/stem cells, or if these cells are determined
for their future fate in the adult. To help to clarify the
question to what extent the adult tissues are already
determined in the larval stage, we investigated the spa-
tial expression of 13 developmental genes in the newly
released, coronate larvae of the gymnolaemate bryozoan
Bugula neritina. This species is one of the better-studied
bryozoans with respect to larval morphology and meta-
morphosis, although many details are still lacking. This
initial set of genes was chosen according to the specific
expression of genes in certain metazoan germ layers or
organs as well as their putative conserved functions in
the development among taxa, and represents a founda-
tion for future molecular studies. Amongst the investi-
gated genes, Tropomyosin is known to be a general
marker of bilaterian musculature; the genes Hox4,
SoxB2, SoxE and FoxB have functions in neural develop-
ment; the genes FoxA, GATA456 and Cdx (Caudal)
have been shown to be involved in gut patterning
among taxa; expression of GATA123 and BAMBI was
observed in the ectoderm of metazoans, and Wnt genes
have been shown to be involved in multiple events
including axial patterning (see Discussion). Genes
engaged in bilaterian gut formation were investigated to
determine if there is any molecular indication for a lar-
val gut being present as anlage of the adult gut in B.
neritina. We discuss the gene expression patterns of the
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bryozoan larval stage in the light of available data for
other metazoans.

Results

Larval anatomy

The larval anatomy of Bugula neritina has been previously
studied and relevant data are reviewed here together with
our own observations (Figure 1). The larvae have a round-
ish body shape (length, 260 pum; width, 190 pm) and the
apical disc, which leads in swimming direction, marks the
apical pole (Figure 1A, B). The apical disc comprises a cen-
tral neural area (apical organ), which is surrounded by an
outer epidermal blastema and an inner mesodermal blas-
tema (Figure 1E) [14,20-22]. The apical organ is detected
in semi-thin sections (not shown). The apical disc is
encircled by infolded ectodermal cells, the pallial epithe-
lium (Figure 1A, E). Opposite of the apical disc lies the
large internal sac, which constitutes nearly half of the larval
interior (Figure 1B). The internal sac is an ectodermal inva-
gination used for attachment to the substrate during meta-
morphosis (see below) and comprises the neck, wall, and
roof region [22]. The wall region is extensive and is folded
upon itself (Figure 1D, E). The roof cells are elongated and
contain basal inclusions of electron transparent vesicles
[22]. The neck cells are recognized by their dark inclusions
(Figure 1D, E). Here, we define the region of the internal
sac opening as “abapical” instead of the formerly used

Figure 1 Light micrographs showing the anatomy of Bugula
neritina coronate larvae. (A) Medio-anterior view, (B) lateral view,
(C) anterior view. (D) Semithin section through a larva, posterio-
median view; stain: basic fuchsine. (E) Semithin section of a larva,
lateral view; stain: toluidine blue. a, apical; ab, abapical; ad, apical
disc; ant, anterior; ci, cilia of coronal cells; cc, ciliated cleft; co,
corona; ep, epidermal blastema; is, internal sac with wall (w), neck
(n), and roof (r) regions; mb, mesodermal blastema; pe, pallial
epithelium; po, pyriform (glandulo-sensory) organ; pos, posterior; yc,
yolk inclusion. Scale bars (A) 100 pm, (D, E) 50 pm.
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“oral”, since coronate larvae lack a mouth. The anterior
side of the larva is defined by the ciliated cleft and the pyri-
form organ, a typical gymnolaemate larval organ (Figure
1C, D). It is a glandular organ, used for crawling, sensing,
and transitorily attaching the larva to the substrate prior to
metamorphosis [14]. The pyriform organ extends between
the mesodermal blastema and the internal sac (Figure 1B,
E). The larva possesses additional nerves, muscles, and
yolky cells (Figure 1D) [12,20,23]. Some of the internal
(yolky) cells are probably endodermal and mesodermal
[14]; however, neither their origin nor their contribution to
the adult body plan is resolved. Most of the larval surface
is covered by several hundred coronal cells, which consti-
tute the larval swimming organ (Figure 1A, D) [14].

The terminology that describes the blastemic cell
layers in bryozoans is currently confusing and it will be
useful to change the nomenclature for the blastemic
cells in the future, when comprehensive cell lineage stu-
dies become established, which trace the embryological
origin of these cells. Herein, we define the cells of the
internal sac, the pallial epithelium, the epidermal blas-
tema, and the mesodermal blastema as blastemic cells.

Development

All data outlined in this section and in Figure 2 were gath-
ered from previous studies. Bugula neritina is a brooder
and embryos are nourished by a special placenta-like system
[18]. The free swimming period of the larva is short, prob-
ably between one and 30 hours before settlement [24].
Initial attachment of the larva to the substrate and first
morphogenetic movements take only a few minutes and
the metamorphosis to the first feeding adult is accom-
plished within several hours (Figure 2A-I) [18,21]. The blas-
temic tissue of the internal sac aids in attachment of the
larva to the substrate. The neck region of the internal sac
contains dark inclusions aiding in initial attachment before
being discarded, while the roof region contains secretory
material and forms the permanent attachment disc of the
first individual of the colony (ancestrula) [16,19]. The wall
region of the internal sac subsequently forms the epidermis
of the free surface of the ancestrula [19]. The epidermal
blastema forms the digestive tract and the lophophore of
the adult bryozoan [25]. The mesodermal blastema contri-
butes the lophophoral coelomic lining and the splanchnic
peritoneum, while the origin of the somatic peritoneum is
unclear [22]. The pallial epithelium forms the epithelium of
the tentacle sheath of the adult. Transitory larval structures
such as the apical organ, the pyriform organ, and the cor-
ona are discarded at metamorphosis.

Gene expression patterns in the bryozoan larval stage
Here we describe the spatial expression of 13 develop-
mental genes in the larval stage of Bugula neritina
according to gene families.
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Tropomyosin

In the larvae of Bugula neritina, we found BnTropomyo-
sin expression at the upper edge of the apical disc, along
the pallial epithelium, surrounding the larva in an equa-
torial position, as well as alongside the ciliated cleft and
internally around the glandular area of the pyriform
organ (Figure 3A-F). Additional expression is found in
the abapical region below the internal sac (Figure 3A,
B). Overall, BuTropomyosin expression is strongest in
the coronal cells at the larval surface as well as in cells
just below the coronal cells, suggesting the presence of
myoepithelial cells in these areas (Figure 3D).

Hox4

We observed BnHox4 expression in the wall and roof
regions of the internal sac in the larvae (Figures 4A-C
and 5A, B). Expression is also found internally in the
glandular cell complex of the pyriform organ, as well as
in the epidermal and mesodermal blastemas (Figure 4B).
SoxB2 and SoxE

BnSoxB2 expression is similar to BuHox4 expression
(Figures 4D-F and 5C). In the bryozoan larva, BuSoxE is
expressed in a subset of the BnSoxB2 expressing cells.
The expression of BuSoxE is within two sickle shaped
areas in the mesodermal blastema, which have their
greatest extension in posterio-lateral position (Figures
4G-I and 5D). Additional faint expression is observed in
the wall region of the internal sac (not shown).

BAMBI

Expression of BuBAMBI is found in a defined area of a
trapezoid shape on the posterior side of the bryozoan
larva, including cells of the epidermal and mesodermal
blastemas, as well as some internal cells. In addition, cells
positioned in the abapical wall region show expression,
which gives a horseshoe-shaped appearance (Figure 4J-L).
FoxA, FoxB and FoxAB

BnFoxA is expressed in a continuous ring in the epider-
mal and mesodermal blastemas, as well as in the wall
and roof of the internal sac (Figures 6A-C and 7A, B).
BnFoxB is co-expressed with BnFoxA in the wall cells of
the internal sac, but also shows expression in the circu-
lar pallial epithelium (Figure 6D-F). BuFoxAB differs
from the expression patterns of BnFoxA and BnFoxAB
and is found in epidermal cells at the posterior side of
the larvae along the edges of the ciliated groove, and the
expression continues from anterior to posterior on the
abapical side (Figures 6G-I and 7C, D).

Cdx (Caudal)

Similar to BnFoxA, BnCdx is expressed as a broad ring
in the apical disc in cells of the epidermal and mesoder-
mal blastemas, the wall region of the internal sac, and
weak expression in the roof cells (Figure 6]J-L).

GATA123 and GATA456

The BuGATA factor 123 shows expression in a ring of
cells in the pallial epithelium (Figures 8A-C and 9A, B).
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Figure 2 Schematics of the fate of larval structures during the metamorphosis of Bugula neritina. Descriptions and slightly modified
drawings after [21,22,76]. A) Competent larva. B) Five seconds (s): post settlement: Initial attachment through eversion of the internal sac. C) 20
s: The roof region of the internal sac moves towards the substratum, the apical disc retracts. D) 60 s: The apical disc re-extends, the corona starts
involuting, the pellicle (excreted by the neck region) covers the larva. E) Approximately 120 s: The corona involutes, the pallial epithelium covers
the apical hemisphere, the wall rotates. F) Approximately 160 s: The edge of the pallial epithelium constricts and the apical disc is compressed,
bringing the pallial epithelium into contact with neck and wall of the internal sac. G) Approximately 240 s. The pallial epithelium constricts and
the wall rises towards the apical region. H) 360 to 390 s. The pallial epithelium thickens, the wall covers the apical region, the apical disc and
surrounding pallial epithelium are pulled inside. Coronal cells begin to autolyse. I) Several hours: transformation from the preancestrula to
ancestrula: the pre-ancestrula elongates, the wall region forms the epidermis (which then secretes the cuticle and calcium carbonate).
Invaginated cells of the epidermal blastema form the digestive tract and the lophophore. The splanchnic lining is formed by cells of the
mesodermal blastema. The pallial epithelium has formed the tentacle sheath. co, corona (light grey); eb, epidermal blastema (purple); gl, gland
cells of pyriform organ; lo, developing lophophore; mb, mesodermal blastema (cyan); nn, nerve nodule; pe, pallial epithelium; pha, pharynx; pel,
pellicle, secreted by the neck region; st, stomach; ts, tentacle sheath; internal sac (is) consisting of n, neck (blue); r, roof (dark grey); and w, wall
(grey).
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y¢, yolk inclusions. Scale bars (A) 100 um, (D) 50 pm.

Figure 3 Tropomyosin expression in Bugula neritina larvae. Expression apical (1), at the pallial epithelium (2), at the equator (3), along the
ciliated cleft (4), in the abapical region (5). (A-C) Light micrographs of whole-mounted larvae. Larvae in posterior (A), lateral (B), and abapical
view at the equator (C). (D) Light micrograph of semithin section of larva in lateral view showing the expression in coronal cells as well as cells
underneath. (E, F) Schematics of BnTropomyosin expression. (E) Larva in posterior/median view, (F) Larva in lateral view. cc, ciliated cleft; co,
coronal cells, eb, epidermal blastema; gl, gland cells of pyriform organ; mb, mesodermal blastema; n, neck; pe, pallial epithelium; r, roof; w, wall;

Expression is also observed in a few cells of the epider-
mal blastema and beneath the mesodermal blastema in
the glandular area. Weak expression is present in the
neck region of the internal sac (Figure 8A, B). In con-
trast, BuGATA456 is expressed in a single spot on the
posterior side of the apical organ in the epidermal blas-
tema of the Bugula neritina larvae (Figure 8D-F).
Wnt1 and Wnt4
BnWntl is expressed in cells of the neck region of the
internal sac, appearing as a ring at the abapical pole.
Further expression is found in cells of the internal sac
apical to the neck cells and in the pallial epithelium
(Figures 8G-I and 9C, D). BuWnt4 is co-expressed with
BnWntl in some cells apical of the neck cells (Figure
8]-L). Additional expression is found in the abfrontal
half of the pallial epithelium (not shown).

A summary of all expression patterns (except Tropo-
myosin, see Figure 3) are presented schematically in Fig-
ure 10.

Discussion

The lecitotrophic larva of Bugula neritina contains only
a few truly larval organs, including the apical sense
organ and associated nerves, the swimming organ (cor-
ona), the glandulo-sensory organ (pyriform organ),
internal yolk cells, and muscles. These transitory larval
structures are all likely to be discarded at metamorpho-
sis [19]. Blastemic tissues that are known to form the
adult during metamorphosis are the epidermal blastema,
the mesodermal blastema, the pallial epithelium, and the
internal sac. Of the 13 developmental genes that we
investigated, 11 genes are expressed in discreet and
highly reproducible regions of one or more of the blas-
temic tissues in the coronate larva that form the adult
during metamorphosis. The results indicate that the
blastemic cells are probably molecularly pre-determined
in the bryozoan larva. Some of the 11 genes show addi-
tional expression in the pyriform organ, which is used
by the larval stage and resorbed at metamorphosis. Only
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Scale bar 100 pm.

Figure 4 Gene expression in Bugula neritina larvae. Column 1: Posterior view. Column 2: Lateral view, with anterior (cc = ciliated cleft) to the
left. Column 3: Abapical view except |, apical view. Anterior pointing left. Row 1: BnHox4 expression in the apical disc, the glandular complex
(pyriform organ = po), and parts of the internal sac. Row 2: BnSoxB2 expression similar to BnHox4 expression. Row 3: BnSoxE expression in the
mesodermal blastema. Row 4: BnBAMBI expression in a trapezoid area including epidermal, mesodermal, and internal cells. Expression is also
found in a horseshoe shaped area in the internal sac corresponding to some wall cells. ad, apical disc; ant, anterior; is, internal sac; pos, posterior.

BnTropomyosin and BnFoxAB are solely expressed in
transitory larval structures, the musculature and the
pyriform organ (ciliated cleft), respectively (Figures 3,
10). In the following sections, we discuss the gene
expression patterns of the bryozoan larval stage in
respect to available data of other metazoans.

Genes involved in neural development

Hox4, SoxB, SoxE, BAMBI and FoxB

In the animals investigated so far, Hox genes have been
shown to play a crucial role in body plan regionalization
along the anterior-posterior axis and are to a great
extent expressed in ectodermal and mesodermal

derivates. In Acoela, expression of a central Hox gene is
found in ectodermal cells in early developmental stages
which later give rise to putative neural precursor cells
[26]. In several polychaetes, Hox4 is expressed in larval
ectoderm and developing neural structures [27-29].
Accordingly, in the mollusk Haliotis, Hox4 expression is
in presumptive neuroectoderm and developing ganglia
in the trochophore stage and later in the mantle, sug-
gesting partial co-option of the gene for shell formation
[30]. Rather similar to Hox4, SoxB genes probably have
a conserved role in nervous system development in cni-
darians and spiralians [31-36]. In the bryozoan Bugula,
BnHox4 and BnSoxB2 are widely co-expressed in both
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Figure 5 Gene expression in semithin sectioned larvae. (A) BnHox4 expression shown in lateral section and (B) magnified area of the
abapical part of the larva showing the expression in the cell soma of the wall and roof cells of the internal sac. Expression in the cytoplasma of
wall cells is indicated in some areas (arrows). Faint expression is present in the glandular area (gl) of the pyriform organ (asterisk). The nuclei of
the wall cells are brightly stained with basic fuchsine (arrow heads). (C) BnSoxB2 expression is visible in the epidermal and mesodermal
blastemas and wall cells. (D) Detail of the apical disc showing expression of BnSoxE in cells of the mesodermal blastema (two cells lacking
expression are indicated by arrows). The epidermal blastema lacks expression (some basally lying nuclei of the cells of this layer are indicated by
arrow heads). All sections are additionally stained with basic fuchsine (pink). co, corona; eb, epidermal blastema; pe, pallial epithelium; mb,
mesodermal blastema; n, neck; r, roof; w, wall; y, yolk inclusion. Scale bars in (A, C) 50 um; (B, D) 25 pm.

transitory larval structures as well as blastemic cells
(Figure 10A, C). Ectodermal expression of Hox4 and
SoxB2 in Bugula is similar to their expression in other
metazoans, where they are involved in neuroectodermal
patterning. Prior to our study, SoxE orthologs have only
been investigated in deuterostomes, and in vertebrates
they change the fate of neural stem cells into glial stem
cells [37-39]. In the bryozoan, BnSoxE is expressed in a
small subset of the BuSoxB2 expressing, blastemic cells
(Figure 10E). BAMBI is an inhibitor of TGF-f signaling
and expression was earlier observed in the beetle Tribo-
lium, where it is co-expressed with BMP/Dpp in the
dorsal ectoderm [40], and in deuterostomes, where
BAMBI is co-expressed with Bmp2/4 orthologs [41-44].
BnBAMBI is expressed in a subset of the BnSoxB2
expressing cells, which form parts of the adult bryozoan
(Figure 10G). FoxB orthologs play a role in neural devel-
opment in the cnidarian Nematostella, the ecdysozoan
Drosophila, and in chordates [33,45-48]. In Bugula,
BnFoxB is exclusively expressed in future ectodermal tis-
sues (Figure 10K).

The above considerations reveal that the bryozoan
orthologs of Hox4, SoxB2, SoxE, BAMBI, and FoxB are
to a great extent expressed in limited domains of the
blastemas, and the expression patterns parallel that of
other animal taxa to some degree. It is feasible that
some of the investigated orthologs also play a role in
nervous system patterning in bryozoans, and additional
studies of gene function will be helpful to evaluate con-
served and novel gene functions in the bryozoan life
cycle.

Genes involved in gut development

FoxA, Cdx and GATA456

The genes FoxA, Cdx, and GATA456 have previously
been shown to be involved in bilaterian gut develop-
ment. FoxA (Forkhead, HNF3) is important for the
development of components of the digestive tract in
protostomes as well as in deuterostomes [49-54]. In an
acoel, FoxA is expressed in the endoderm surrounding
the mouth, suggesting an ancestral role of FoxA in the
endoderm and a later co-option in oral ectoderm in
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pm.

Figure 6 Gene expression in Bugula neritina larvae. Column 1. A-D, posterior view. J, anterior view. Column 2: Lateral view. Column 3:
Abapical view. Row 1: Expression of BnfoxA in the epidermal and mesodermal blastema in the apical disc (ad) and the wall and roof region of
the internal sac (is). Row 2: Expression of BnfoxB in the pallial epithelium (pe) and parts of internal sac. Row 3: Expression of BnfoxAB along the
ciliated cleft (cc) and on the abapical side (arrow). Row 4: Gene expression of BnCdx, similar to BnFoxA. ant, anterior; pos, posterior. Scale bar 100

ant=—=pos

bilaterians [55]. In annelids, FoxA is expressed during
gut formation [56-58], and in the mollusk Patella, FoxA
expression is in the endoderm and in the developing
foregut [59]. In the bryozoan larva, BuFoxA is expressed
in different blastemas that give rise to adult tissues dur-
ing metamorphosis (Figure 10I). Expression of BnFoxA
in the epidermal blastema, which is supposed to form
the adult digestive tract, suggests a function in gut
development similar to other metazoans. Cdx/Caudal
orthologs are involved in metazoan hindgut formation

[60,61]. In addition, Cdx orthologs are expressed in the
brains of both an acoel and an annelid [26,62]. In the
mollusk Patella, Cdx expression is observed in the pos-
terior neuroectoderm and mesodermal cells [63]. In the
bryozoan larva, BnCdx is co-expressed with BuFoxA
(Figure 100), and it seems likely that BnCdx is partially
involved in adult gut formation as in other lophotro-
chozoans. However, compared to other taxa, neither
FoxA nor Cdx show positional pre-patterning in the
bryozoan. The gene GATA456 1is involved in
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Figure 7 Gene expression in semithin sectioned larvae. (A) Lateral section showing FoxA expression in the apical disc and the wall (w) and
roof (r) of the internal sac, similar to SoxB2. (B) Cross section showing FoxA expression in the wall of the folded internal sac. (C) Cross section in
abapical area showing FoxAB expression in epidermal cells in the area of the ciliated cleft and (D) area around the ciliated cleft magnified with
the expression indicated by arrows. All sections are additionally stained with basic fuchsine (pink). cc, ciliated cleft; eb, epidermal blastema; mb,
mesodermal blastema; n; neck region of internal sac; y, yolk inclusion; Scale bars in (A, B, C) 50 um; (D) 25 pm.

endodermal specification in annelids [57,58]. In the
bryozoan larva, BnGATA456 is co-expressed with
BnCdx and BnFoxA in a confined domain in the epider-
mal blastema (Figure 10S).

Our results lead to the conclusion that the genes
FoxA, Cdx, and GATA456 are probably involved in the
formation of the adult digestive tract in bryozoans and
other metazoans and that the epidermal blastema is
pre-patterned according to its future fate. In this
study, we find no sign of a vestigial larval gut in
Bugula neritina, corroborating former histological
investigations [22].

Genes involved in ectoderm specification

GATA123

The GATA123 factor appears to be involved in ectoder-
mal lineage specification in annelids [57,58,64], similar
to what has been described for Drosophila [65]. We
observed BnGATA123 expression to the greatest extent
in ectodermal larval structures as well as in blastemic
tissues that form the ectoderm of the adult (Figure
10Q), consistent with the ectodermal expression of the
gene in other taxa.

Genes for axial patterning

Wnt

Whnt signaling might be involved in the development of
the primary body axis in most Metazoa [66]. However,
from this suggested ancestral role, Wnt diversified and
regulates many processes in metazoan taxa. A common
feature of Wnt expression is a staggered arrangement
along the anterior-posterior axis with partly overlapping
domains in, for example, Nematostella, leech, or Capi-
tella [67,68]. In Bugula, Wntl and Wnt4 expression is
in specific, partly overlapping subsets of the future adult
ectoderm, suggesting that the internal sac is regionalized
and its cells might be differentially involved in adult
body wall patterning (see also Figure 10U, W).

Gene expression in transitory larval tissues

Tropomyosin and FoxAB

Most of the 11 genes mentioned above are largely
expressed in subsets of progenitors of adult tissues, with
only BnTropomyosin and BnFoxAB expressed exclusively
in transitory larval tissues. Tropomyosin is a general
marker of bilaterian musculature. The F-actin compo-
nent of the larval musculature of Bugula species was
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Figure 8 Gene expression in Bugula neritina larvae. Column 1: A, D: posterior view. G, J: anterior view. Column 2: B, E, H, K: lateral view.
Column 3: C, F: apical view. I, L: abapical view. Row 1: BhGATA123 expression in the pallial epithelium (pe) and below it in the area of the
pyriform organ (asterisk). Faint expression below the internal sac is indicated (arrows). Row 2: BnGATA456 expression in a single spot in posterio-
apical position. Row 3: BhWnt1 expression pattern. 1 indicates posterior expression in some wall cells; 2 refers to the ring at abapical pole. Row 4:
Expression of BnWnt4 in some wall cells. ant, anterior; cc, ciliated cleft; po, pyriform organ; pos, posterior.

investigated in previous studies and revealed prominent
longitudinal and radial central muscles positioned
between the internal sac and the apical organ, as well as
body wall muscles [69,70]. The BnuTropomyosin expres-
sion appears to conform with body wall muscles, and
corresponds closely with a previous ultrastructural
investigation of the Bugula neritina larva, which showed
(1) the presence of myoepithelial cells between coronal
cells, (2) a collarette of myoepithelial cells that join the
infolded pallial epithelium, (3) a pair of myoepithelial
cells extending along the lateral sides of the ciliated cleft

and (4) a collarette joining the oral margin of the corona
[21] (compare with Figure 3). The lack of Tropomyosin
expression in blastemic tissues indicates that the adult
musculature differentiates after metamorphosis.

Our study showed that BnFoxAB expression is con-
fined to epidermal cells along the ciliated cleft and
along a part of the abapical side of the bryozoan larva
(Figure 10M). In a brachiopod larva, FoxAB expression
was observed in cells of the apical pole instead (Hejnol
et al., unpublished data). Since no such expression is
found in the bryozoan larva and comparable gene
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Figure 9 Gene expression in semithin sectioned larvae. (A) BnGatal23
(C) Lateral section of a larva showing the expression pattern of BAWnt1 in

points to cilia of the apical disc. (D) Expression of BnWntT in the pallial epithelium (double arrow). All sections are additionally stained with basic
fuchsine (pink). eb, epidermal blastema; mb, mesodermal blastema; is, internal sac; gl; glandular area of the pyriform organ; n, granula in neck
region; r, roof; w, wall; y, yolk droplet. Scale bars 100 um in (A, ©), 25 um in (B, D).

expression in the pallial epithelium (arrows) and area magnified in (B).
cells of the neck (arrowheads) and wall cells (arrow). The arrowhead

expression data of other metazoans are currently lack-
ing, our conclusions must be provisional, but recruit-
ment of FoxAB to larval structures may also be found in
other taxa.

Pluripotent stem cells versus pre-patterned adult tissues

It was earlier proposed that “homologous set-aside cells”
exist in “homologous larvae of protostomes and deuter-
ostomes” [71]. These set-aside cells were supposed to
have a rather unlimited division capacity and remain
pluripotent and undifferentiated until late embryogen-
esis. This idea is rooted in the hypothesis that early
metazoans were similar to modern larvae, and that the
bilaterian adult stage evolved by the innovation of set-
aside cells, distinct from the larval cells [72]. However,
this hypothesis would presume a similar gene regulatory
system in all modern larvae. Here, we have shown that
the blastemic cells ("set-aside cells”) in the bryozoan lar-
val stage express several metazoan developmental genes.
The result indicates that the fate of the blastemic cells is
already determined in the bryozoan larval stage and the
blastemic cells of bryozoans are probably not

pluripotent stem cells or set-aside cells. Our study
rather suggests similarities between developmental gene
expression in the bryozoan blastemas and adult tissues
of other metazoans. In conclusion, this study does not
support homology of the bryozoan larval stage and
other lophotrochozoan larvae. Instead, the gene expres-
sion patterns presented herein indicate that planktonic
larvae might have secondarily evolved in bryozoans. The
latter hypothesis needs to be evaluated by further stu-
dies of gene expression and gene function during the
development of bryozoans as well as other
lophotrochozoans.

Conclusions

We have shown here the gene expression of 13 develop-
mental genes (Tropomyosin, Hox4, SoxB2, SoxE, BAMBI,
Cdx, FoxA, FoxB, FoxAB, GATA123, GATA456, Wntl,
and Wnt4) in the coronate larva of the bryozoan Bugula
neritina. Eleven of the 13 genes are expressed in blaste-
mic cells, which are precursors of adult tissues. Probably
only a few of the investigated genes have their main
function in the larval stage, as for example,
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Figure 10 Schematics of gene expression patterns of 12 genes in the coronate larva of Bugula neritina. Rows 1 and 3 represent larvae in
sagittal section, in either an anterior angle (ciliated cleft = cc and glands of pyriform organ = gl indicated) or in a posterior angle (ciliated cleft
not indicated). Rows 2 and 4 show larvae in lateral view with anterior side to the left. co, corona; eb, epidermal blastema; mb, mesodermal

BnTropomyosin, which is expressed in larval muscle
cells. This study reveals that the blastemic cells in the
bryozoan larval stage are most probably pre-patterned
according to their future fate in the adult and are not
pluripotent, undifferentiated set-aside cells as previously
stated [71]. Our results contradict the idea that larval
and adult bodies are different entities, but that there is a
natural transition from the embryo to the adult with an
intermediate larval stage. A comparison of expression
patterns among metazoans reveals molecular similarities
between bryozoan blastemas and adult tissues of other
metazoans. Hence, our study does not indicate homol-
ogy of the bryozoan larva with other lophotrochozoan
larvae, but instead suggests conserved patterns of devel-
opmental gene expression amongst lophotrochozoan
and metazoan adults. This study adds important data to
the fundamental discussion about the evolution of

metazoan larval stages and should trigger the interest in
investigating gene expression in the “set-aside cells” of
the larval stage of other lophotrochozoans as, for exam-
ple nemerteans. Cell-lineage studies of bryozoans and
additional gene expression studies during bryozoan
development will also contribute to our understanding
of the evolution of metazoan life cycles.

Methods

Collection of bryozoans

Colonies of Bugula neritina were collected from sub-
merged hard substrates in shallow water depth (0 to 3
m) in harbors of Honolulu ("La Mariana” and Kewalo
Basin) and Pearl Harbor, Oahu, Hawaii in May and June
2009. The colonies were kept in flowing seawater tables
in the dark at the Kewalo Marine Laboratory (Hawaii)
for a minimum of one day. By exposing colonies to



Fuchs et al. EvoDevo 2011, 2:13
http://www.evodevojournal.com/content/2/1/13

pointed light sources, larvae were released from spawn-
ing colonies. They were immediately collected from the
water surface under dissecting microscopes and pre-
pared for further investigation.

RNA isolation and ¢cDNA synthesis

Larvae were fixed and stored in RNAlater at 4°C. Larval
mRNA was obtained using DynaBeads mRNA DIRECT
Kit (Invitrogen, Carlsbad, CA, USA) according to the
supplier and stored at -80°C. Complementary DNA
(cDNA) synthesis was achieved using the Advantage
RT-for-PCR Kit protocol (Clontech Laboratories, Moun-
tain View, CA, USA) following the supplier’s instruc-
tions. cDNA was stored at -20°C.

Gene isolation

The sequences for the genes BnTropomyosin, BnBAMBI,
BnSOXB2, BnSoxE BnHox4, BnFoxB, BnFoxAB, WNT1
were gained from a public EST library of Bugula neri-
tina [3]. Fragments for BnCdx, BnFoxA, BaWNT4 and
both GATA factors were gained using degenerate pri-
mers with larval cDNA as template. Sequences of the
genes from the EST library were amplified using gene
specific primers and degenerate fragments were
extended using rapid amplification of cDNA ends
(RACE) with a SMART RACE cDNA amplification kit
(Clontech Laboratories, Mountain View, CA, USA). All
fragments were cloned into pGEM-T Easy vectors (Pro-
mega Corporation, Madison, WI, USA), transformed
into E.coli, and clones sequenced at Macrogen, Inc.
(Seoul, South Korea). Fragments obtained from B. neri-
tina were used for probe synthesis in in situ hybridiza-
tion reactions, which are described below. Primer
sequences are listed in Additional file 1 Table S1. Genes
were deposited at NCBI GenBank (see below).

Gene accession numbers

BnBAMBI [GenBank: HQ914790]; BuCdx [GenBank:
HQ914791]; BnFoxA [GenBank: HQ914792]; BnFoxAB
[GenBank: HQ914793]; BnFoxB [GenBank: HQ914794];
BnGATAI23 [GenBank: HQ914795]; BnGATA456 [Gen-
Bank: HQ914796]; BnGsc [GenBank: HQ914797];
BnHox4 [GenBank: HQ914798]; BnSoxB2 [GenBank:
HQ914799]; BnSoxE [GenBank: HQ914800]; BnTropo-
myosin [GenBank: HQ914801]; BnWnt1 [GenBank:
HQ914802]; BunWnt4 [GenBank: HQ914803]; BnWnt8
[GenBank: HQ914804].

Gene orthology assignment

Gene orthologies for all genes (except for BuBAMBI and
BnTropomyosin of which the orthology was detected by
alignments) were determined by phylogenetic analyses
using PhyML 3.0 [73]. Alignments were conducted
using MUSCLE [74] and corrected by hand. ProtTest
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[75] was used to determine the best-fitting model. A
total of 1,000 to 3,000 bootstraps were calculated
respectively, see Additional data files.

In situ hybridization protocol

Larvae of B. neritina were relaxed in 7.14% MgCl,, pre-
fixed in glutaraldehyde fixative (0.3% glutaraldehyde, 3.7%
formaldehyde in seawater) for two minutes, fixed in 3.7%
formaldehyde for one hour at 4°C, washed five times in
PTw (1x PBS = phosphate buffered saline + 0.1% Tween
20) and once in distilled water, which was replaced three
times by 100% methanol. The larvae were finally stored in
the latter at -20°C. All further steps follow the protocol of
Hejnol et al. [55]. Following the development of the in situ
probes, larvae were then transferred into 70% glycerol and
whole-mounted on glass slides and expression patterns
were imaged with a Nikon DXM1200 digital camera
mounted on a Nikon Eclipse E1000 microscope. For
detailed examination of the expression patterns, larvae
were also prepared for histology.

Histology of larva after in situ hybridization

For the histological preparations, in situ hybridized lar-
vae stored in 70% glycerol were washed three times in
PBS and dehydrated in an ascending ethanol series with
a final step of dehydration in 100% propylene oxide.
The larvae were transferred into a 1:1 mixture of 100%
propylene oxide and Low Viscosity Resin (LVR) (Agar
Scientific, Stansted, UK) over night for infiltration. The
animals were embedded in 100% LVR and semithin
serial sections (2 pm) were performed on a Leica
RM2255 microtome using a Diatome Histo Jumbo Dia-
mond Knife (Diatome, Hatfield, PA, USA). Sections
were stained with a 1% solution of basic fuchsine (p-
Rosanilin) in 70% ethanol or toluidine blue and
embedded in LVR on slides. Imaging was performed
with the Nikon setup described in the previous section.

Additional material

Additional file 1: Primer sequences and gene orthology analyses.
Degenerate primer sequences (Table S1) and trees of the orthology
analyses of the Bugula neritina genes BnSoxB2, BnSoxE, BnFoxA, BnfoxB,
BnFoxAB, BnHox4, BnCdx, BhGATA123, BnGATA456, BnWnt1, BnWnt4, and
BnWhnt8 (Figures ST - S5).

Abbreviations

Bn: Bugula neritina; cDNA: complementary DNA; DNA: deoxyribonucleic acid;
EST: expressed sequence tag; mRNA: messenger ribonucleic acid; PBS:
phosphate buffered saline; PCR: polymerase chain reaction; LVR: low viscosity
resin; RACE: rapid amplification of cDNA ends
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