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Abstract 

Background:   Previous analysis suggested that the relative contribution of individual bones to regional skull lengths 
differ between inbred mouse strains. If the negative correlation of adjacent bone lengths is associated with genetic 
variation in a heterogeneous population, it would be an example of negative pleiotropy, which occurs when a 
genetic factor leads to opposite effects in two phenotypes. Confirming negative pleiotropy and determining its basis 
may reveal important information about the maintenance of overall skull integration and developmental constraint 
on skull morphology.

Results:  We identified negative correlations between the lengths of the frontal and parietal bones in the midline 
cranial vault as well as the zygomatic bone and zygomatic process of the maxilla, which contribute to the zygomatic 
arch. Through gene association mapping of a large heterogeneous population of Diversity Outbred (DO) mice, we 
identified a quantitative trait locus on chromosome 17 driving the antagonistic contribution of these two zygomatic 
arch bones to total zygomatic arch length. Candidate genes in this region were identified and real-time PCR of the 
maxillary processes of DO founder strain embryos indicated differences in the RNA expression levels for two of the 
candidate genes, Camkmt and Six2.

Conclusions:  A genomic region underlying negative pleiotropy of two zygomatic arch bones was identified, which 
provides a mechanism for antagonism in component bone lengths while constraining overall zygomatic arch length. 
This type of mechanism may have led to variation in the contribution of individual bones to the zygomatic arch noted 
across mammals. Given that similar genetic and developmental mechanisms may underlie negative correlations in 
other parts of the skull, these results provide an important step toward understanding the developmental basis of 
evolutionary variation and constraint in skull morphology.
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Background
The skull is a complex structure that supports and pro-
tects tissues critical for survival, including the brain, 
sense organs, and masticatory apparatus. While a wide 
range of skull morphology has evolved across mam-
malian species, fundamental patterns of skull bone 
integration are generally conserved [1–4]. This shared 
morphological pattern reflects conserved tissue origins 
[5], ossification patterns [6–8], and strong selective pres-
sure for an adequately integrated and functional head 
[2, 9]. The same factors that reinforce the development 
of an integrated head can serve as developmental con-
straints on the directions that evolution can take [10, 11]. 
Understanding the genetic basis for this integration and 
developmental constraint is critical for illuminating how 
genes and development can influence processes of evo-
lution. Here, we investigate the genetic basis for nega-
tive correlations between adjacent skull bones in a large 
genetically heterogeneous population of mice. These 
negative correlations may serve as developmental con-
straints that support overall integration of the head while 
also allowing for significant variation in the relative size 
of individual bones within subregions. Identifying genetic 
factors underlying this type of developmental constraint 
is important for understanding the basis of morphologi-
cal integration and will illuminate critical connections 
between developmental and evolutionary processes.

Random pairs of linear distances across the skull are 
expected to display positive correlations driven by the 
overall growth of the integrated head. Negative correla-
tions between raw linear distance measurements are rare 
and can be evidence of scale-independent negative plei-
otropy, which exists when genetic variation leads to an 
opposite phenotypic effect on two traits [10, 12]. Within 
the craniofacial skeleton, a pair of negatively correlated 
and adjacent bone lengths provides a relatively simple 
system within which to search for genes underlying nega-
tive pleiotropy. Although not as commonly discussed, 
negative pleiotropy is fundamentally different than antag-
onistic pleiotropy, which occurs when a genetic factor 
contributes a positive fitness effect for at least one trait 
and a negative fitness effect for at least one other trait 
[13–15]. The concept of negative pleiotropy does not 
require either trait to be associated with a fitness effect. 
However, the existence of negative pleiotropy itself might 
have either positive or negative fitness effects, depending 
on the evolutionary context.

A previous analysis of adult skull variation indicated 
that linear dimensions of the cranial vault, zygomatic 
arch, and cranial base vary strongly among the eight 
inbred mouse founder strains of the Collaborative Cross 
(CC). Furthermore, that analysis indicated that pairs 
of bones within each of these regions display negative 

correlations in relative size [16]. Here, we explicitly tested 
whether pairs of adjacent linear distances within cranial 
vault, zygomatic arch, and cranial base are negatively cor-
related. In cases where they were, we performed genome-
wide mapping in a large heterogeneous population of 
Diversity Outbred (DO) mice to identify genomic regions 
driving negative pleiotropy. The DO mice are derived 
from the CC founder strains. Each mouse carries a high 
degree of heterozygosity and a unique combination of 
alleles [17, 18], which is ideal for high-resolution genetic 
mapping. Although genome-wide mapping has been per-
formed on DO mice for other phenotypes such as blood 
measurements and body composition [17–19], this is the 
first study that addresses craniofacial morphology.

Previous quantitative trait locus (QTL) analyses of 
mouse craniofacial variation have illustrated the ubiquity 
of pleiotropy in the genetics of craniofacial form [20–22] 
and identified candidate genes associated with variation 
in multivariate measures of craniofacial shape in a vari-
ety of mouse populations [23–27], including another out-
bred mouse sample [28]. The DO mice may prove more 
valuable than previously analyzed mouse crosses or back-
crosses, because they represent a strongly genetically het-
erogeneous population that has been outbred for more 
than 10 generations, leading to relatively high genomic 
mapping resolution. In addition, haplotype variation at 
a given SNP can be tied back to the complete genomic 
sequence of eight diverse inbred founder strains.

Within our mapping results, we expect that a locus 
driving negative pleiotropy will have a significant haplo-
type effect on the linear distances of each adjacent bone. 
Furthermore, we expect that variation in founder strain 
haplotypes at this locus will be associated with oppo-
site phenotypic effects for each bone (i.e., one bone gets 
longer when the other gets shorter). Third, if this locus 
represents a developmental constraint on the morphol-
ogy of the combined length of both bones, we expect that 
local haplotype variation will have no effect on overall 
regional length. Identifying a genomic region associated 
with negative pleiotropy and candidate genes within it is 
a critical first step in understanding an important genetic 
and developmental basis for both developmental con-
straint and variation in the relative contribution of bones 
to regional skull morphology. Although our analyses are 
regionally specific, identifying the general mechanisms 
underlying negative pleiotropy of adjacent skeletal ele-
ments is an important step toward understanding the 
developmental basis for evolutionary change in the skull.

Methods
Adult and embryonic sample
Our measurements of the Collaborative Cross (CC) 
founder strains and their F1 crosses derive from 
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craniofacial landmarks collected from 1211 specimens 
for a previous analysis [16]. The Diversity Outbred (DO) 
mice are the result of multiple generations of random 
outcrossing of 175 breeding pairs from partially inbred 
CC lines [18] at the Jackson Laboratory (JAX; Bar Har-
bor, ME). Our primary sample consisted of mice raised at 
the University of North Carolina (UNC), and at JAX. The 
287 adult specimens raised at UNC were male and female 
sibling pairs from outbreeding generation 10 that  were 
raised in previously described conditions [19, 29] under 
approval and conduced in accordance with the guidelines 
set forth by the Institutional Animal Care and Use Com-
mittee (IACUC) at the University of North Carolina at 
Chapel Hill. The 277 adult specimens raised at Jackson 
Labs (JAX IACUC #99066) were females of outbreeding 
generations 9, 10, and 15.

A sample of 472 DO mice of generations 19, 21, and 
23, raised at the Scripps Research Institute (IACUC #08-
0150-3), were used to validate relevant QTLs identified 
by genome-wide association in our primary sample. This 
validation sample was chosen because it includes mice 
from later DO generations with greater recombination, 
which might allow for the refinement of any validated 
QTL (i.e., shorter confidence intervals). After collec-
tion, adult specimens were stored at −20 °C. Receipt and 
imaging of specimens from other institutions was con-
ducted in accordance with approved IACUC protocol 
#AC13-0268 at the University of Calgary.

Embryonic specimens from A/WySnJ (AWS), C57BL/6J 
(C57), and WSB/EiJ (WSB) inbred backgrounds were col-
lected at the University of Calgary at embryonic day (E) 
11.5 and processed as recently described [30]. Briefly, 
embryos were fixed overnight in PaxGene tissue fix solu-
tion (Qiagen, PreAnalytics, cat #765312) then stored at 
−20 °C in the PaxGene tissue stabilizer solution prepared 
to manufacturer specification (Qiagen, PreAnalytics, cat 
#765512). Embryonic collection and processing were 
conducted in accordance with approved IACUC protocol 
AC13-0267 at the University of Calgary.

Linear distances versus relative linear dimensions
Negative relationships between the length of bones mak-
ing up the zygomatic arch, sagittal cranial vault, and 
posterior cranial base were previously identified among 
the eight CC founder strains from plots of relative linear 
dimensions that differ strongly between a given founder 
strain and several of the other founder strains [16]. Unlike 
standard linear distances, these relative dimensions were 
calculated from landmark coordinates after they were 
scaled to remove overall size variation and then trans-
formed to remove the linear component of static allome-
try. These steps were necessary in the previous analysis of 
craniofacial shape between genotypes with a wide range 

of sizes, including small wild-derived strains and the 
very large New-Zealand Obese strain. However, because 
most raw linear distances are positively correlated with 
head size, removing variation that covaries with overall 
size can create artefactual negative associations between 
many of the resulting linear dimensions. For instance, 
two randomly selected linear distances are both strongly 
positively correlated with head size (centroid size) 
(Fig.  1a, b). They are also strongly positively correlated 
with each other (Fig.  1c). After scaling landmark coor-
dinates underlying these measurements by overall skull 
size during Procrustes superimposition, variation that 
is correlated with overall scale is removed, regardless of 
whether that variation is mechanistically or developmen-
tally related to overall size variation. This frequently leads 
to an artificial negative correlation between the resulting 
linear dimensions (Fig. 1d). Correlation coefficients from 
many linear distance pairs illustrates how scaling during 
Procrustes superimposition changes an asymmetric dis-
tribution of correlation coefficients between raw linear 
distances into a symmetric distribution of correlation 
coefficients centered on zero (Fig. 1e). Because this scal-
ing procedure magnifies aspects of negative covariation, 
we completed our current analysis of potential develop-
mental constraints on adjacent bones using raw linear 
distances to make certain that our evidence for negative 
relationships between these skull lengths are genuine.

Phenotype measurement
Micro-computed tomography (µCT) images of heads 
were obtained in the 3D Morphometrics Centre at the 
University of Calgary with a Scanco vivaCT40 scanner 
(Scanco Medical, Brüttisellen, Switzerland) at 0.035 mm 
voxel dimensions at 55  kV and 145  µA. Three dimen-
sional coordinates of 54 adult landmarks (8 midline, 46 
bilateral), as previously defined [16], were collected by a 
single observer from minimum threshold defined bone 
surfaces within Analyze 3D (www.mayo.edu/bir/).

We calculated linear distances associated with zygo-
matic arch length, sagittal cranial vault length, and mid-
line cranial base length from raw landmark coordinates 
collected on both CC founder/F1 specimens and DO 
specimens (Fig.  2). Full zygomatic arch length was cal-
culated as the linear distance between landmarks L(R)3 
and L(R)32, with the length of zygomatic process of the 
maxilla defined between L(R)3 and L(R)24 and zygo-
matic bone length defined between L(R)24 and L(R)32. 
Full cranial vault length was defined between M21 and 
M27, while the length of the frontal and parietal bones 
were defined between M21–M26 and M26–M27, respec-
tively. Posterior cranial base length was defined between 
M36 and M38, while the lengths of the basioccipital and 
sphenoid bones were defined between M36–M37 and 

http://www.mayo.edu/bir/
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M37–M38, respectively. We completed our analysis of 
the zygomatic arch lengths on the average of the left and 
right sides to help control for any stochastic landmark-
ing error or stochastic developmental variation between 
the left and right sides. We were unable to do this for the 
other measurements, because they are found along the 
midline of the skull.

The Pearson’s correlation coefficient (r) for each pair 
of component linear distances (e.g., zygomatic bone 
length vs. zygomatic process of maxilla length) and 
between each component linear distance and the overall 
trait length (e.g., zygomatic bone length vs. total zygo-
matic arch length) was calculated to identify correlation 
direction and strength. A t test of whether the r is dif-
ferent from 0 was completed for each pair to determine 
whether their correlation is significant, after Bonferroni 
correction to account for multiple testing (α =  0.0028). 
The coefficient of determination (R2) is interpreted as a 
measure of how much variance in one length in a pair is 
explained by the other.

Genotyping and association mapping
Tail biopsies were taken from mice at 6 weeks of age, and 
DNA was either extracted from the tissue using the QIA-
GEN DNeasy kit per manufacturer’s instructions or sent 
to NeoGen GeneSeek for DNA extraction. The primary 

DO sample was genotyped using the MegaMUGA SNP 
array [GeenSeek (Neogen), Lincoln, NE] [31], while the 
validation sample was genotyped using the GigaMUGA 
array (GeenSeek (Neogen), Lincoln, NE) [32]. We used 
a subset of 57,977 MegaMUGA SNPs or 120,789 Giga-
MUGA SNPs that distinguish among the genotypes of 
the eight CC founder strains and their heterozygous F1 
offspring and have a quality tier of 1 or 2 [32]. The proba-
bility that each of the eight founder strains contributed to 
a given SNP maker was calculated for each DO specimen 
based on array intensity values using the DOQTL pack-
age [17] within R [33].

Association mapping was performed using DOQTL 
[17] for both components and the overall trait length of 
linear distance pairs that displayed a significant nega-
tive relationship within our primary DO mouse sample. 
First, we completed genome scans for the primary sam-
ple using an additive haplotype model for regression of 
the specimen founder genotype dosage on an individual 
linear distance, with age at sacrifice and sex as covariates. 
Peaks indicating regions of the genome where haplotype 
covaries with a given trait were identified as those with 
LOD scores above a genome-wide significance threshold 
determined with permutation tests (1000 iterations, indi-
cating a LOD score ~ 7.76). The support intervals under 
these significant peaks were identified as continuous 
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Fig. 1  Linear distance correlations and scaling. Plots of two randomly chosen linear distances calculated from our CC founder and F1 sample 
illustrating the change in correlation direction after scaling measures to overall skull size (centroid size). Plots of raw linear distance a L15–R22 and 
b R32–R2 versus skull centroid size. Plots of linear distance L15–R22 versus R32-R2 c before and d after Procrustes superimposition-based scaling 
(based on centroid size). e Correlation coefficients from 10,000 randomly permuted linear distance pairs calculated from raw linear distances (left) 
and after (right) Procrustes superimposition and scaling
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regions including 2 LOD scores below the LOD score 
value of that significant peak. The results of these additive 
haplotype regressions also indicate which founder haplo-
types are associated with positive or negative increases in 
linear distance length. We completed association map-
ping using an additive SNP-based regression model [17] 
across the genomic intervals of interest that were identi-
fied in the previous step. A permutation test of the SNP-
based regression model across the genome was used to 
determine the LOD score significance threshold for these 
tests. Second, to validate significant peaks on chromo-
some 17, we completed the same association mapping 
steps with our validation sample for zygomatic arch dis-
tances across chromosome 17 (rather than across the 
whole genome).

RT‑PCR
The E11.5 maxillary process was chosen for RT-PCR 
because both the maxilla and zygomatic bones are 
derived from mesenchymal condensations within this 
process (see “Discussion”), starting at approximately 
E11.5. Specifically, this age was chosen because it is the 
approximate time when morphogenesis and differentia-
tion of the facial skeleton begins [34, 35]. Mouse embryos 
were dissected in ice cold PBS and immediately preserved 
using the PaxGene tissue system (Qiagen, PreAnalyt-
ics cat #765312, 765512). Embryos were fixed overnight 
in the fix at room temperature with rocking, then trans-
ferred to the stabilization buffer and stored at −20  °C. 
Maxillary processes were subsequently micro-dissected 
from five A/WySnJ (AWS), five C57BL/6J (C57), and six 
WSB/EiJ (WSB) embryos that had been stored in Pax-
Gene tissue stabilization buffer and were stored in fresh 
stabilization buffer at −20  °C until extraction. AWS 
embryos were used in place of A/J embryos, because they 
were available at the University of Calgary and because 
the two are closely related inbred strains.

Following a recently published analysis [30], RNA was 
extracted using the PaxGene RNA extraction kit (Qia-
gen, PreAnalytics cat #766134), which includes a DNA 
removal step. RNA was analyzed using a NanoDrop 
1000 (ThermoFisher). While RIN analysis was not per-
formed on these samples, a similar group of samples 
processed during the same time span (Agilent BioAna-
lyzer) had RIN scores in the area of 7.9–8.3, which is 
in line with kit specifications. 500  ng of RNA was con-
verted to cDNA using the Maxima First Strand Kit (Ther-
moFisher, Cat #K1641) in a 25  µl reaction. Real-time 
PCR was performed on an Applied Biosystems Quanti-
flex Studio 6 using standard cycling conditions with the 
low volume (10  µl) setting. Reactions were performed 
using the 2× PrimeTime gene expression mastermix 
from Integrated DNA Technologies with low ROX, 
PrimeTime assays (Gapdh—Mm.PT.39a.1, Camkmt—
Mm.PT.58.7890215, Six3os1—Mm.PT.58.43925739, 
Six2—Mm.PT.58.22007192), an ABI Taqman assay 
(18s—Mm0477571_s1), and custom Six3 primers (Probe: 
5 ′-CAAACTTCGCCGATTCTCACCACTGCT-3 ′ , 
Forward primer: 5′-TCTCTATTCCTCCCACTTCTT 
GTTG-3′, Reverse primer: 5′-GCCGCTACTCGCCA 
GAAGTA-3′) [36]. Additional primer sequence details 
are found in Additional file  1. Normalization was done 
using the arithmetic average of the deltaCT from Gapdh 
and 18 s RNA runs. Reference genes were selected based 
on stability from previous experiments and RNAseq data 
from this region of the face.

Since C57 mice had an intermediate phenotypic effect, 
mean C57 RNA expression was used as the baseline 
upon which to compare the expression of all specimens 
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Fig. 2  Linear distances for analysis. Pairs of linear distances that 
were tested for a negative correlation within CC founder/F1 and DO 
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(measured as fold change). One-way ANOVA tests of 
fold-change values between genotypes were completed 
for Camkmt, Six2, Six3, and Six3OS1 using Graphpad 
Prisim (Version 6) software. If there were differences in 
expression between genotypes, we looked for similarities 
between variation in RNA expression and the phenotypic 
effects of A-strain, C57, and WSB haplotypes on relative 
zygomatic bone length, which might indicate that varia-
tion in expression of these candidate genes is associated 
with the identified negative correlation in zygomatic 
bone lengths. This was done by using a post-test for lin-
ear trend.

Results
We explicitly tested whether the lengths of adjacent 
bones within the cranial base, cranial vault, and zygo-
matic arch were negatively correlated. While we expected 
that most linear distances in the skull would be posi-
tively correlated, a negative correlation is evidence for a 
developmental constraint in how component bones (e.g., 
frontal and parietal bones) contribute to a larger over-
all trait (e.g., cranial vault length). All component bone 
lengths were significantly positively correlated with cor-
responding overall trait lengths (Table 1). The lengths of 
component bones of the zygomatic arch were negatively 
correlated within the CC Founder/F1 and DO samples, 
while cranial vault components were negatively corre-
lated within the DO sample. There was no evidence of a 
negative association between components of the poste-
rior cranial base.

Association mapping
Given the negative correlations between the length 
of bones contributing to the zygomatic arch and cra-
nial vault, we completed genome-wide association 

mapping to look for evidence of a genomic region that 
might drive these correlations based on the mecha-
nism of negative pleiotropy. Our association mapping 
analysis revealed two intervals on chromosome 17 that 
were associated with zygomatic bone length variation 
(42.04829–45.95447; 85.30648–85.88324  Mb), while the 
second of these intervals (85.30648–85.88324  Mb) was 
also associated with zygomatic process of the maxilla 
length variation (Fig.  3b, c). The phenotypic effects of 
founder haplotypes under the second peak were in oppo-
site directions for the two components (Fig. 4), meaning 
that a founder haplotype associated with an increase in 
zygomatic length was also associated with a decrease 
in zygomatic process of the maxilla length. This closely 
matches our expectation for a gene underlying negative 
pleiotropy between two components of a larger trait. Fur-
thermore, this interval displays a significant LOD score 
for both components but not for total zygomatic arch 
length (Fig. 3a), which meets our expectation that a gene 
underlying a developmental constraint on zygomatic 
arch morphology will have opposite effects on the rela-
tive contribution of the components to zygomatic arch 
length without effecting overall arch length. Chromo-
some specific association mapping with our validation 
sample confirmed the second zygomatic peak on chro-
mosome 17 (84.37429–85.86122 for zygomatic bone; 
83.71674–85.88897 for zygomatic process of maxilla), 
the general phenotypic effects of haplotypes under this 
peak (Additional file  2), and suggested a few other sig-
nificant peaks on chromosome 17 related to zygomatic 
arch length (Fig. 5). In addition, a single significant peak 
on the X chromosome was noted for total cranial vault 
length (98.220635–100.409455) in our primary sample, 
but it did not reach significance in our validation sample. 
This vault length peak was not further pursued in this 

Table 1  Linear distance correlations

Bolditalic indicates a significant negative correlation after accounting for multiple testing with Bonferonni correction (α = 0.0028)

Linear distance 1 Linear distance 2 CC founder/F1 DO

Pearson’s 
correlation 
coefficient (r)

R2 r  ≠ 0 t test  
p value

Pearson’s 
correlation 
coefficient (r)

R2 r ≠ 0 t test 
p value

Zygomatic Process of Maxilla (L3–L24) Zygomatic Bone (L24–L32) − 0.232 0.054 < 0.001 − 0.294 0.086 < 0.001

Zygomatic Process of Maxilla (L3–L24) Full Zygomatic Arch (L3–L32) 0.465 0.216 < 0.001 0.620 0.385 < 0.001

Zygomatic Bone (L24–L32) Full Zygomatic Arch (L3–L32) 0.748 0.560 < 0.001 0.561 0.315 < 0.001

Frontal Bone (M21–M26) Parietal Bone (M26–M27) − 0.034 0.001 0.232 − 0.345 0.119 < 0.001

Frontal Bone (M21–M26) Vault Length (M21–M27) 0.776 0.602 < 0.001 0.622 0.386 < 0.001

Parietal Bone (M26–M27) Vault Length (M21–M27) 0.603 0.363 < 0.001 0.519 0.270 < 0.001

Basioccipital (M36–M37) Sphenoid Body (M37–M38) 0.592 0.350 < 0.001 0.333 0.111 < 0.001

Basioccipital (M36–M37) Posterior Cranial Base (M36–M38) 0.870 0.757 < 0.001 0.786 0.618 < 0.001

Sphenoid Body (M37–M38) Posterior Cranial Base (M36–M38) 0.912 0.832 < 0.001 0.844 0.713 < 0.001
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study because it did not reach significance for either cra-
nial vault component.

Association mapping across the support interval of 
the second peak associated with zygomatic arch vari-
ation on chromosome 17 (85.30648–85.88324  Mb) 
indicates there are 19 known or predicted genes in this 
region (Fig. 6). These include three protein-coding genes 
(Six2, Six3, Camkmt) and one well-studied non-coding 
RNA (Six3os1). We noted that the WSB and A/J founder 

haplotypes are associated with opposite phenotypic 
effects for zygomatic bone and zygomatic process of the 
maxilla lengths, while the C57 haplotype effect is inter-
mediate (Fig.  4). Therefore, if differences in the expres-
sion level of a protein-coding gene were responsible for 
founder haplotype associated variation in zygomatic 
bone length, we expected that A-strain and WSB expres-
sion levels would be most different, while C57 expression 
would be intermediate.
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RT‑PCR
To test whether the expression of these four candidate 
genes met this expectation, we collected maxillary 
prominences from embryonic day (E) 11.5 embryos 
of AWS, C57, and WSB mice, which had been stage 
matched by tail somite number. We then completed 
RT-PCR on these tissue samples using three replicates 
for each sample to quantify RNA expression levels 
for Camkmt, Six2, Six3, and Six3os1. All fold-change 
values were compared to the C57 mean as a baseline. 
One-way ANOVA results indicate genotype identity 
significantly contributes to Camkmt and Six2 RNA 
expression (Table 2). In both cases, a post-test for lin-
ear trends is significant when genotypes are ordered 
as WSB, C57, then AWS. WSB displays relatively high 
mean Camkmt RNA expression levels and relatively 
low Six2 levels. AWS displays relatively high mean 
Six2 levels and intermediate mean Camkmt levels 

(Fig. 7). No significant trends are noted for either Six3 
or Six3OS1. 

Discussion
Within a sample of DO mice, we confirmed negative cor-
relations between the lengths of bones contributing to 
the cranial vault and found strong evidence for negative 
pleiotropy between the length of the zygomatic bone and 
the zygomatic process of the maxilla. A genomic interval 
on chromosome 17 (85.3–85.9 Mb) met all our expecta-
tions for a genetic basis of negative correlation between 
these adjacent zygomatic arch bones. Specifically, there 
were significant and opposite haplotype effects on zygo-
matic and zygomatic process length (Figs. 3a, b, and 4), 
but no significant haplotype association with overall 
zygomatic arch length (Fig. 3c). This example of negative 
pleiotropy shows how skull shape can be conserved while 
the individual bone contributions to that shape can vary. 
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The development of an integrated skull that fits together 
well enough for masticatory, sense organ, breathing, and 
brain function is necessary for survival [1, 11, 12, 37]. Just 
as with any skull region, the range of possible zygomatic 
arch phenotypes that allow for proper skull integration 
and function is limited. Our results illustrated a mecha-
nism of developmental constraint that supports skull 
integration while allowing for variation in how specific 
bones contribute to a fundamentally conserved mamma-
lian skull morphology.

Phenotypic impact of candidate region variation
There is a significant association between haplotype vari-
ation under a genomic region on mouse chromosome 17 
and variation in the lengths of the zygomatic process of 

the maxilla and the zygomatic bone. While we are con-
fident that there is a causal factor in this region, zygo-
matic arch element lengths are likely highly polygenic as 
is the norm for skull morphology [22, 38]. As with most 
skull bone lengths, the length of the zygomatic bone and 
the zygomatic process of the maxilla also correlate posi-
tively with skull size. In fact, the amount of variation 
explained by the correlation with skull size (as measured 
by R2) is greater than the amount of variation explained 
by the negative correlation between the two zygomatic 
components (Table  1). Additionally, the greatest differ-
ence between haplotype specific phenotypic effects in 
our genomic interval is about 0.4  mm (Fig.  4), which is 
approximately one standard deviation for these bone 
length measurements across our DO mice. Although the 
identified negative pleiotropy plays an important role in 
limiting overall zygomatic arch morphology, system-wide 
growth factors play a stronger role in determining all 
zygomatic arch bone lengths.

In addition to the interval displaying negative pleiot-
ropy, another peak on chromosome 17 between 42 and 
46 Mb met the genome-wide significance level for asso-
ciation with zygomatic bone length. With larger samples 
and different measurements of zygomatic arch morphol-
ogy, other regions of interest would also be identified (as 
in [39]). Furthermore, although a mouse with the WSB 
haplotype under our interval of interest had, on average, 
a 0.3  mm shorter zygomatic bone than other DO mice 
(Fig. 4), WSB inbred founder mice don’t all have a shorter 
zygomatic bone than other inbred founder strains. This 
is because WSB alleles in other regions of the genome 
also contribute to the total WSB founder strain pheno-
type. Variation in even small-scale skull morphologies is 
produced by the combination of numerous factors, some 
acting globally across an organism and some acting more 
locally [11, 22]. However, determining the genetic factor 
on mouse chromosome 17 that drives negative pleiotropy 
within the zygomatic arch may help to reveal an impor-
tant basis of developmental constraint and evolutionary 
change within the skull.

Candidate genes
Three protein-coding genes (Camkmt, Six3, and 
Six2) and one non-coding RNA with known function 
(Six3os1) are found under our candidate region of inter-
est (Fig.  6). Our real-time PCR results indirectly sup-
port Camkmt and Six2 as candidate genes. Although 
we cannot definitively rule out other genetic factors 
under and near this genomic interval as candidates, we 
speculate that changes in the expression of at least one 
of these four identified factors might be responsible for 
the noted negative pleiotropy in zygomatic arch element 
length.
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CAMKMT (calmodulin-lysine N-methyltransferase) is 
expressed across a wide range of tissues and plays a piv-
otal role in the methylation of calmodulin, which changes 
across developmental stages and varies in a tissue spe-
cific manner [40]. Deletion of a genomic region including 
CAMKMT in humans has been associated with micro-
gnathia, dolichocephaly, and cleft palate, although the 
specific loss of CAMKMT has been associated with intel-
lectual disability and muscle fiber abnormalities instead 
of these craniofacial phenotypes [41]. Since CAMKMT 
regulates calmodulin (CaM) function, it is also important 

to note that calmodulin has been linked to variation in 
beak length in Darwin’s finches and chicks [42]. CAM-
KMT is critical to basic physiological function across 
the body and has tentatively been associated with severe 
craniofacial birth defects.

SIX2 (sine oculus-related homeobox  2) is known to 
play a significant role in the skeletal development of 
pharyngeal arch derivatives. SIX2 is upregulated in neu-
ral crest-derived cranial mesenchyme in mice at E8.5 
[43] and E9.5 [44], becoming localized to mesenchymal 
cells of nasal prominences, midline, and developing skull 
vault, as well as olfactory epithelium by E11.5 [43, 45, 46]. 
Downregulation of SIX2 can lead to loss or reduction in 
facial skeletal elements [47], reduced cranial base length, 
and cleft palate [48]. Later in development, SIX2 loss has 
been linked to increased rates of cartilage replacement by 
bone during endochondral ossification of the presphe-
noid, leading to an abnormal cranial base morphology 
[49]. SIX2 regulates the formation of bones from the first 
pharyngeal arch, which includes both the maxilla and 
zygomatic bones.

SIX3 (sine oculus-related homeobox  3) interacts with 
BMP, WNT, and NODAL, is critical during eye develop-
ment [50–52], and during anterior neural plate specifica-
tion [53]. Although SIX3 is not expressed in the maxillary 
arch or other craniofacial mesenchyme during embryonic 
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Table 2  ANOVA post-test for a linear trend in RNA expres-
sion, where  the alternate hypothesis is that  the level 
of expression is ordered by genotype with C57 being inter-
mediate to the other two genotypes (AWS and WSB)

Slope of the associated linear model, R2 indicating how much variation that 
model explains, and a p-value of the probability that the slope of the linear 
model equals zero are reported

*Significance at 0.05 level; **Significance at 0.01 level

Gene Slope R2 p value

Camkmt − 0.2118 0.5009 0.0014**

Six2 0.2949 0.3342 0.0237*

Six3 0.1141 0.04933 0.426

Six3OS1 − 0.05338 0.01178 0.698
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development [44], genetic variation in Six3 can lead to 
craniofacial dysmorphology of maxillofacial bones [54], 
particularly in the facial midline. Mutations in SIX3 can 
cause holoprosencephaly in humans, a condition associ-
ated with forebrain malformation, intellectual disability, 
ophthalmological abnormalities, and craniofacial features 
including cyclopia, nasal dysmorphology, and cleft lip/
palate [55]. A combination of forebrain loss and modi-
fied ectoderm/mesenchyme interactions may underlie 
the associated craniofacial dysmorphology (e.g., [56]). 
SIX3OS1 (Six3 opposite strand) is an antisense non-cod-
ing RNA that is independently coexpressed with SIX3 in 
the forebrain and eye after E8.5 in mice [57]. SIX3OS1 
likely acts as a transcriptional scaffold for SIX3 and mod-
ulates the ability of Six3 to regulate expression of target 
genes in retinal cells [58]. SIX3 and SIX3OS1 may indi-
rectly regulate facial bone development.

Although all four candidate genes have been previously 
associated with craniofacial dysmorphology, Six2 is par-
ticularly tantalizing because it is a major player in facial 
bone ossification and is associated with RNA expression 
level differences between founder strain maxillary promi-
nences. Assuming that variation in Six2 or one of its cis-
regulatory factors is responsible, we speculate about how 
variation in SIX2 expression might modify development 

to produce zygomatic arch variation in our DO mice and 
across mammalian clades.

Developmental mechanisms
All bones that contribute to the mouse zygomatic arch 
form from neural crest-derived mesenchyme [59, 60] 
within the first pharyngeal arch [61–63]. The maxilla 
and zygomatic bone derive from neural crest cells that 
migrate from the posterior mesencephalic region, while 
much of the squamous temporal neural crest mesen-
chyme probably originates in the first couple of rhom-
bomeres [5, 64]. Our results indicate that a gene or 
regulatory element within our candidate interval deter-
mines the location of the border between the maxilla and 
zygomatic within the adult zygomatic arch. Because the 
zygomatic bone is the last remaining dermally ossified 
circumorbital bone in mammals [6, 65] and appears to be 
the only dermatocranial element that does not develop 
in proximity to chondrocranial elements [66], it may 
ossify in response to a different signal than the maxilla. 
Although Dlx genes and related factors are associated 
with determining upper and lower jaw fates within the 
first pharyngeal arch [67], what determines the individual 
bone fate of mesenchymal cells within the maxillary por-
tion of the first pharyngeal arch remains unknown.
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Heuzé and colleagues [68] recently suggested that the 
zygomatic progenitor cells experience developmental 
cues analogous to Dlx expression patterns that distin-
guish them from maxillary cell populations. It is possi-
ble that one of these cues is the spatiotemporal pattern 
of Six2 expression. Supporting this perspective, loss of 
SIX1 results in a partial transformation of the zygomatic 
process of the maxilla into a mandible, possibly through 
downstream effects on Dlx gene expression [69]. This 
partial morphological transformation includes a signifi-
cant increase in the length and volume of the zygomatic 
process of the maxilla and a significant reduction of the 
zygomatic bone or the fusion of zygomatic and maxil-
lary portions of the zygomatic arch together [69]. As 
two members of the same gene family that are expressed 
within the developing pharyngeal arches, it is possible 
that SIX1 and SIX2 regulate development through simi-
lar pathways and mechanisms.

If a mutation in SIX2 leads to a change in how regional 
segmentation genes like the Dlx genes are expressed, it 
is possible that the variation in the contribution of max-
illa and zygomatic to the zygomatic arch (Fig. 8a) may be 
based on a change in the location of a regulatory gene 
expression border between their presumptive cell popu-
lations (Fig.  8b). Tissue boundary definition is critical 
in many developmental contexts [70]. One well-docu-
mented craniofacial example of a gene regulatory border 
prevents mesenchymal and osteogenic cells from cross-
ing the presumptive coronal suture between neural crest 
and mesodermally derived mesenchymal cells [70–72] 
(although, see [73]). A change in the relative location of 
a gene regulatory boundary may serve to define the final 
location of the zygomaticomaxillary suture.

There are other ways that a mutation in SIX2 might 
modify developmental processes to lead the measured 
zygomatic arch length variation. The site of the zygomati-
comaxillary suture may not be defined prior to osteogen-
esis but may simply occur wherever the growing bones 
meet. Six2 expression has been associated with increased 
mesenchymal cell proliferation in the developing head 
and renal system [48, 49, 74]. Recent results indicate that 
Six2 mRNA and protein levels are highest in palatal tis-
sues during the period of initial palatal shelf outgrowth 
and suggest that later spatiotemporal expression pat-
terns are responsible for local increases in mesenchymal 
cell proliferation [48]. It is possible that genetic varia-
tion under our candidate region leads to a change in the 
timing, location, or level of mesenchymal precursor cell 
populations.

A change in proliferation within either the maxillary or 
zygomatic mesenchymal condensations may result in size 
variation of that condensation and the resulting bones 
(Fig.  8c). Within chicken eyes, it has been shown that 

the largest and most widely spaced intramembranously 
ossified scleral ossicles tend to be those with the earliest 
forming mesenchymal condensation precursors. In addi-
tion, if one ossicle fails to form, the adjacent ossicles fill 
in the extra space [75]. In another relevant example, a 
Fuz ciliopathy mutation leads to the formation of a single 
frontal bone pair at the expense of parietal bones in mice, 
perhaps because an excess proliferation of precursor cells 
leads to an unusually wide frontal bone mesenchymal 
condensation [76]. It is possible that a similar change in 
the proliferation rate within the maxillary or zygomatic 
bone mesenchymal condensations may cause them to 
become larger at the expense of the other. While Six2 is 
a tantalizing candidate gene that may drive the negative 
pleiotropy in zygomatic arch bone lengths among DO 
mice, further work is required to confirm this.

Evolutionary implications
The jugal bone (homologous with zygomatic bone) is 
first noted in the fossil record as one of the circumorbital 
bones within the dermal skeleton of agnathans. Within 
the presumed ancestral tetrapod, the jugal was a narrow 
bone of the inferior orbital margin that articulated with 
facial bones including the lacrimal, maxilla, and squa-
mosal (reviewed by [65, 68]). The zygomatic bone of the 
last common ancestor of mammals was likely a linear 
bone connecting the maxilla and squamosal bones that 
lacked a postorbital connection to the frontal bone. This 
view is supported by the existence of similar morpholo-
gies in living monotremes, marsupials and many other 
mammalian clades. Among mammals, zygomatic arches 
vary in their width, breadth, height, length, degree and 
direction of curvature, among other characteristics. A 
complete postorbital border between frontal and zygo-
matic bones is noted in some clades (e.g., cervids, equids, 
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Fig. 8  Potential developmental mechanisms underlying zygomatic 
arch variation. Schematic models of developmental mechanisms by 
which an a adult phenotype of relative skeletal contribution to the 
zygomatic arch might occur. Options include b external regulatory 
definition of a presumptive suture, c differences in initial mesen-
chymal condensation size, and d differences in relative growth or 
ossification rates between the two bone primordia
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primates), is sometimes represented by zygomatic and 
frontal processes that do not touch (e.g., carnivorans, 
lagomorphs), and completely absent in other mammals 
(e.g., bats, insectivores, rodents) [77–79]. Arch thickness 
and robusticity may vary in response to selective pres-
sure based on mechanical loading requirements [80–83], 
with robust arches found in beaver and rabbits, thinner 
arches in mice and moles, and a practically complete loss 
in shrews.

Although a wide range of morphologies occur across 
mammals, our results specifically relate to variation in the 
relative contribution of bones to zygomatic arch length 
between the main bodies of the maxilla and squamosal 
bones. The zygomatic process of the maxilla, the zygo-
matic bone, and the zygomatic process of the squamous 
temporal typically contribute to form the zygomatic arch. 
Because only a short squamous temporal portion exists 
in laboratory mice, our analysis focused on the zygomatic 
and maxillary bone contributions to overall arch length. 
Mouse strain haplotype variation noted under a genomic 
interval on mouse chromosome 17 (85.3–85.9  Mb) is 
responsible for significant variation in the relative contri-
bution of these bones to arch length.

Analogous genetic variation may underlie variation in 
the relative contribution of zygomatic arch elements to 
total arch length across mammalian species. This sort of 
phenotypic variation is common across mammalian taxa. 
For example, carnivorans including felids and canids typ-
ically have a very short zygomatic process of the maxilla, 
an anteriorly placed zygomatic bone, and a relatively long 
zygomatic process of the temporal [78, 84] (Fig. 9a). On 
the other hand, rodents typically have a long zygomatic 
process of the maxilla, a more posteriorly placed zygo-
matic bone, and a short zygomatic process of the tem-
poral [78, 85] (Fig.  9b). We propose that the identified 
pattern of negative pleiotropy contributes to this mam-
malian variation in relative bone length, but not that it 
explains all variation in zygomatic arch length or shape.

Two clades that were commonly thought to lack a 
zygomatic bone illustrate how an extreme imbalance 
in two zygomatic arch elements might manifest. First, 
moles (Talpidae) may represent the logical extreme of 
the proposed mechanism. Although moles lack a sepa-
rate zygomatic bone as adults [78, 86] (Fig. 9c), one of the 
multiple small zygomatic arch ossification centers [77] 
may represent the zygomatic bone [87] and fuse with the 
zygomatic process of the maxilla quite early in develop-
ment. The mole zygomatic arch is a complete arch, with 
a minor zygomatic bone contribution, and a lack of zygo-
matic arch sutures. The fossil order of Multiturberculata 
was long considered unique as mammals with a robust 
zygomatic arch, but lacking a zygomatic bone. However, 
careful work by Hopson and colleagues [88] indicated 
the zygomatic bone is found medial to the maxillary and 
temporal portions of the arch rather than in between.

If the modified expression of a factor like SIX2 leads to 
the expansion of one arch bone at the expense of another, 
a fusion of the arch bones together and/or a displace-
ment of the smaller bone may occur. In fact, SIX1 null 
mutant mice with the enlarged zygomatic process of the 
maxilla also display either a smaller displaced zygomatic 
bone or fusion of zygomatic and maxillary portions of the 
developing arch [69]. It is temping to speculate that this 
reduction and fusion of the zygomatic bone might serve 
as a foundation for total zygomatic bone loss. In moles, 
where the existence of a zygomaticomaxillary suture is 
not functionally necessary, a complete loss of the zygo-
matic bone ossification center would result in the same 
morphology as long as the growing temporal and maxil-
lary bones expanded further to fill in the gap as occurs 
among chick scleral ossicles [75]. However, in the case of 
the Multiturberculata, the continued presence of the dis-
placed zygomatic bone may serve to reinforce the zygo-
matic arch response to mechanical forces [88]. Regardless 
of the responsible factor, similar changes in developmen-
tal processes [89] may underlie the variation in zygomatic 
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Fig. 9  Mammal zygomatic contributions. a snapshot of mammalian variation in the relative contributions of zygomatic arch bones, including a 
feral domestic cat (Felis silvestris catus), b a wild caught common rat (Rattus norvegicus), and c a European mole (Talpa europae). Outlines based on 
images found on DigiMorph (digimorph.org). Colored lines representing the relative length of the zygomatic process of the maxilla (red), the zygo-
matic bone (blue), and the zygomatic process of the squamous temporal (green) match the colors noted in Figs. 2 and 8
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arch bone contributions among our DO mice and varia-
tion that has arisen during mammalian evolution.

Conclusions
Investigating how genetic factors constrain the range of 
possible skull variation is critical for identifying mecha-
nisms of integration and developmental constraint. Out 
of three cranial regions studied, we identified a genomic 
region underlying negative pleiotropy within the zygo-
matic arch. Association mapping and subsequent RT-PCR 
analysis identified candidate genes that might underlie 
this pattern. Further study is required to determine how 
the responsible genetic factor modifies developmental 
processes to limit overall zygomatic arch length while 
allowing for variation in the relative length of contributing 
zygomatic bones. This pattern of negative pleiotropy may 
have contributed to the evolution of mammalian zygo-
matic arch diversity. Identifying the particular develop-
mental basis for this negative pleiotropy has implications 
beyond the zygomatic arch, because changes in similar 
instances of negative pleiotropy underlie significant evo-
lutionary variation in the relative contribution of adjacent 
bones to larger morphological features in other regions 
like the cranial vault and upper jaw. These results provide 
a significant toe-hold in unraveling an example of nega-
tive pleiotropy and developmental constraint, which is an 
important step toward understanding the developmental 
basis for evolutionary change in the skull.
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