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Abstract 

Background:  Segmentation, the subdivision of the major body axis into repeated elements, is considered one of the 
major evolutionary innovations in bilaterian animals. In all three segmented animal clades, the predominant segmen-
tation mechanism is sequential segmentation, where segments are generated one by one in anterior–posterior order 
from a posterior undifferentiated zone. In vertebrates and arthropods, sequential segmentation is thought to arise 
from a clock-and-wavefront-type mechanism, where oscillations in the posterior growth zone are transformed into 
a segmental prepattern in the anterior by a receding wavefront. Previous evo-devo simulation studies have demon-
strated that this segmentation type repeatedly arises, supporting the idea of parallel evolutionary origins in these 
animal clades. Sequential segmentation has been studied most extensively in vertebrates, where travelling waves 
have been observed that reflect the slowing down of oscillations prior to their cessation and where these oscillations 
involve a highly complex regulatory network. It is currently unclear under which conditions this oscillator complex-
ity and slowing should be expected to evolve, how they are related and to what extent similar properties should be 
expected for sequential segmentation in other animal species.

Results:  To investigate these questions, we extend a previously developed computational model for the evolution 
of segmentation. We vary the slope of the posterior morphogen gradient and the strength of gene expression noise. 
We find that compared to a shallow gradient, a steep morphogen gradient allows for faster evolution and evolved 
oscillator networks are simpler. Furthermore, under steep gradients, damped oscillators often evolve, whereas shallow 
gradients appear to require persistent oscillators which are regularly accompanied by travelling waves, indicative of 
a frequency gradient. We show that gene expression noise increases the likelihood of evolving persistent oscillators 
under steep gradients and of evolving frequency gradients under shallow gradients. Surprisingly, we find that the 
evolutions of oscillator complexity and travelling waves are not correlated, suggesting that these properties may have 
evolved separately.

Conclusions:  Based on our findings, we suggest that travelling waves may have evolved in response to shallow 
morphogen gradients and gene expression noise. These two factors may thus also be responsible for the observed 
differences between different species within both the arthropod and chordate phyla.
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Background
Evolutionary developmental biology aims to understand 
how the developmental patterning mechanisms evolved 
that shape complex organisms. It also seeks to answer 
why evolution favours certain patterning mechanisms 
over alternative, theoretically possible, mechanisms, and 
whether and how these mechanisms can change into 
one another. Segmentation, the division of the body axis 
into repeated units, is considered a major evolutionary 
innovation and has been intensely studied on the level of 
the developmental mechanism and from an evolution-
ary perspective. Within the animal clade, there are three 
lineages with a clearly segmented organization: annelid 
worms, arthropods and chordates [1, 2]. There are both 
striking similarities and differences in the segmentation 
mechanism used by different species both between and 
within clades, making segmentation an ideal subject for 
evo-devo questions.

In most segmented animals, segments are generated 
from a posterior growth zone and laid down in a regu-
lar anterior–posterior sequence. Sequential segmenta-
tion has been studied in most detail in vertebrates, where 
somites emanate sequentially from a posterior undiffer-
entiated zone, the presomitic mesoderm (PSM), in which 
oscillatory gene expression occurs. A wavefront retreating 
across the PSM transforms this oscillatory gene expres-
sion into a spatially repeated pattern of segments (for 
review, see, e.g. [3]). Most arthropods appear to deploy 
a similar sequential segmentation mode although the 
molecular details underlying oscillations and the trans-
formation to segments are still incompletely understood 
[4]. In addition to sequentially segmenting arthropods, 
amongst which the so-called short germband insects, 
also intermediate and long germband insects exist. These 
two types of insects pattern, respectively, their anterior 
segments or all their segments simultaneously, using a 
different developmental mechanism. While the segmen-
tation process in annelids is also sequential, cell lineages 
with a different future fate are specified before segmenta-
tion through stereotyped divisions and appear to undergo 
distinct parallel sequential segmentation processes before 
fusing into segments [5].

Previous evo-devo simulation studies demonstrated 
that oscillation-driven sequential segmentation readily 
evolves out of an initial random gene regulatory net-
work (not structured by prior evolution). References 
[6–10], provided that a posterior signalling centre has 
previously evolved [10]. These studies also showed 
that this type of segmentation mechanism should be 
expected to evolve due to its higher robustness and 
its greater ability to flexibly adjust segment numbers 
relative to alternative strategies. However, thus far, the 
potential conditions and selective pressures that cause 

differences in the more detailed aspects of sequential 
segmentation have remained unresolved.

In vertebrates, the oscillatory nature of segment pat-
terning was originally discovered from the observation 
of waves of gene expression traversing the unsegmented 
tissue [11]. These gene expression waves were shown to 
arise independently of cell–cell contact [11] and instead 
result from the gradual slowing down of oscillations 
before they arrest into segments [11–14]. Apart from 
these so-called kinematic waves, vertebrate segmenta-
tion is characterized by a complex regulatory network 
consisting of three coupled oscillator motifs involving 
the FGF, Wnt and Delta-Notch signalling pathways 
[15–17]. Kinematic waves have also been observed in 
sequentially segmenting arthropods, for example the 
centipede Strigamia [18, 19]. It has been suggested 
that oscillator slowing is a crucial part of the mecha-
nism underlying the transition from oscillatory gene 
expression to segments [20, 21] or instead that it is an 
emergent property (a “side effect”) of cell–cell signal-
ling [22]. Additionally, it has been hypothesized that 
travelling waves enhance the robustness of the segmen-
tation process [23]. Intriguingly, in both the chordate 
and arthropod lineages, variation exists in the extent 
of these travelling waves and the length of the undif-
ferentiated region between the growth zone proper and 
the last-formed segment. For instance, in Amphioxus (a 
non-vertebrate chordate), segments are formed directly 
anterior to a small posterior zone, and no travelling 
wave dynamics have been reported thus far [24]. On a 
similar note, in the short-germ beetle Tribolium, travel-
ling waves have been reported but the relative distance 
they travel before halting appears to be shorter than, 
for example, in Strigamia [4, 18].

When considering the genetic composition of the oscil-
lator, Amphioxus does not seem to require FGF and also 
RA appears to be less involved than in vertebrates [25, 
26]. This could potentially indicate a simpler oscillator 
architecture. Similarly, in Tribolium, so far only a simple 
negative feedback loop of pair-rule genes has been shown 
to underlie segment oscillations in the trunk [27], while 
in other sequentially segmenting insects this loop has 
not been identified, and possibly more complex mecha-
nisms are at play [28]. One tempting possibility could 
thus be that more complex oscillators are correlated with 
and potentially responsible for more extensive kinematic 
waves. Alternatively, oscillator complexity may be related 
to mutational and developmental robustness and occur 
independent of kinematic waves. Finally, apparent oscil-
lator simplicity in, for example, Amphioxus and Tribo-
lium may merely reflect a lack of available data, and as 
a consequence the relation between kinematic waves and 
oscillator complexity is currently unclear.
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Here, we applied an evo-devo modelling framework 
to investigate under which conditions complex oscilla-
tor networks and travelling oscillator waves are likely to 
evolve, and to what extent they co-occur. Based on the 
observations outlined above, we speculate that differ-
ences in travelling wave dynamics could arise from the 
difference in relative size of the non-segmented zone 
between species, which are likely caused by differences 
in morphogen gradient lengths and slopes. We therefore 
vary the rate of morphogen decay to test the impact of 
gradient length scale and slope on the type of oscilla-
tory segmentation that evolves. Since it is unclear to 
what extent oscillator complexity is necessary for either 
kinematic waves or developmental robustness, we also 
investigate the influence of gene expression noise on the 
phenotype resulting from evolution. To analyse large 
numbers of simulations more efficiently, we build an 
automated analysis pipeline to assess oscillator complex-
ity and the occurrence of travelling waves.

We find that shallow, long morphogen gradients often 
lead to the evolution of persistent oscillations, travel-
ling waves and complex networks. In contrast, simula-
tions with steep, short morphogen gradients resulted 
in slightly simpler networks and more often produced 

damped oscillators, while sequential segmentation 
evolved faster. Damped oscillators are more sensitive to 
perturbations and less easily allow for evolution of longer 
body axes containing more segments.

Interestingly, gene expression noise increased the frac-
tion of persistent oscillators under a steep gradient and 
also increased the fraction of travelling wave oscillators 
for both shallow and steep gradients. This suggests that in 
our model, evolution of oscillator slowing is enhanced by 
(indirect) selection for robustness. Surprisingly, we found 
that gene regulatory network complexity and oscillator 
slowing, both typical for vertebrate somitogenesis, did 
not evolve in a strongly correlated manner in our model. 
This implies that these properties may evolve separately.

Methods
The model
General set‑up
We use an individual-based model of a population of 
organisms evolving on a lattice, as has been applied 
before to evolution of segmentation and domains [8, 10] 
(Fig. 1a).

Each organism has a so-called pearls-on-a-string 
genome consisting of genes (encoding transcription 

a

b c d

e

Fig. 1  Overview of the model. a The developing organisms live on a 2D lattice. Each individual organism consists of a row of cells, of which the 
posterior-most cell divides at regular intervals. Within the growth zone, the morphogen (in blue) is maintained at a high concentration; it decays 
in cells outside of this zone. The genome of the organism codes for a network of regulatory interactions, which determines the spatio-temporal 
dynamics of the proteins within each cell (see d). b The gradients resulting from the different morphogen decay rates (d) used in our simulations. 
The lambda indicates the position (or time) at which the morphogen concentration is half-maximal, i.e. 50: � = ln(2)/d . c The initial conditions for 
each new individual at the start of its development. There is a growth zone with high morphogen, and a “head” region without morphogen. d At 
the end of development, the expression of the segmentation gene is averaged over a number of time steps, and from this the segment boundaries 
are determined. e The mutational operators acting on the genome
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factors) and upstream regulatory regions with transcrip-
tion factor binding sites (TFBS) [29]. Organisms also have 
a highly simplified multicellular body consisting of a one-
dimensional row of cells. Instead of starting at full length 
as in previous models (for review, see [9]), organisms 
start out small and grow during the course of their devel-
opment. The organisms reproduce in a fitness-dependent 
fashion, with fitness dependent on the number of seg-
ments pre-patterned by the final gene expression pat-
tern in the row of cells. Importantly, since we explicitly 
select for segments, our modelling approach can not 
help answer why body axis segmentation evolved. How-
ever, no selective pressure is exerted on how segments 
should be generated, so evolution is free to evolve any 
mechanism capable of generating segments. Therefore, 
we can use our model to investigate how certain condi-
tions influence what types of segmentation mechanisms 
evolve.

Individuals
Genome, network and genes The genome codes for a 
gene regulatory network. The genes in the genome form 
the nodes of the network; the set of TFBS upstream of 
each gene in the genome dictate the incoming regulatory 
edges of the GRN (Fig. 1a). Outgoing edges follow from 
genes matching the type of the TFBS in front of another 
gene. The regulatory interactions between genes can be 
repressive (strength −1 ) or activating (strength 1). The 
network governs gene expression dynamics and subse-
quent protein levels. Gene expression is modelled with 
ordinary differential equations as shown in Eq. 1:

Transcription of gene i is determined by the activating 
genes Aj ( j = 1 . . . l ), where the activator with the highest 
activating input (as given by 

An
j

An
j +Hn ) determines the over-

all activation, resulting in a so-called activating OR gate. 
Repressive inputs Ik ( k = 1 . . .m ) are multiplied, result-
ing in a repressive AND gate (l and m are the total num-
ber of activating and repressing inputs for gene i). It 
should be noted that these choices are somewhat arbi-
trary, as for both activating and repressive TFs, AND as 
well as OR or even different types of integration have 
been reported. The main goal here is to incorporate at 
least partially the highly complex, nonlinear integration 
of TF inputs into gene expression levels. E is the maxi-
mum expression level; δ is the degradation rate; H is a Hill 
constant, the transcription factor concentration level at 
which half-maximal activation or repression occurs; and 
n is the Hill coefficient governing the steepness of the 
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= Maxj=1

(

An
j

An
j +Hn

)

∗�k=1

(

Hn

Ink +Hn

)
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transition from low to high gene expression depending 
on transcription factor concentrations.

There are 16 types of genes, indicated with a number 
from 0 to 15.

Gene 0 encodes the morphogen It is not regulated by 
any of the other gene products, but instead is set to high 
expression in the cells of the growth zone, while decaying 
with a predefined rate in the rest of the embryo (Fig. 1b). 
We run simulations with either a large or a small morph-
ogen decay rate, yielding a steep or a shallow morphogen 
gradient, respectively.

Gene 5 encodes the segmentation protein, whose final 
expression pattern after development determines the 
number of segments formed and hence the fitness of the 
organism.

Gene expression noise In a subset of simulations, we 
implemented gene expression noise as follows. First, we 
computed the expected gene expression rates based on 
the first part of Eq. 1. Next, we computed the actual gene 
expression rate by sampling from a Gaussian distribution 
around the expected gene expression rate. Specifically, 
we assume a Gaussian distribution with a mean equal 
to the computed expected gene expression rate Rexpr 
( µ = Rexpr , σ = l ∗ Repxr ), where l in the standard devia-
tion σ determines the overall level of noise (low: l = 0.07 , 
medium: l = 0.14 , high: l = 0.21 ). Note that by scaling 
the standard deviation with the mean, the noise which is 
defined as the standard deviation divided by the mean, is 
kept constant independent of the mean gene expression 
rate. We avoid negative gene expression rates by capping 
any negative gene expression rates due to noise to zero: 
Ractual = Max(0,Rexpr + noise).

Developmental dynamics Individuals start their devel-
opment with a short row of 14 cells, where five cells form 
the primordial “growth zone” in which the morphogen 
concentration is high; in the remaining nine cells (the 
“head”), the morphogen is absent (Fig.  1c). The other 
genes have an expression level of 0 in all cells. This means 
that no gene expression will occur in the anterior-most 
nine cells. We ignore the developmental processes gen-
erating the head part of the body and their evolution and 
focus solely on the developmental processes governing 
formation of more posterior body parts and their evo-
lutionary history. The posterior-most cell of the growth 
zone divides at regular intervals, pushing the other cells 
forward so that they eventually move out of this zone. 
Once a cell leaves the growth zone, the morphogen pro-
tein starts decaying. As a result, a gradient of the mor-
phogen is formed due to the age difference of the cells 
(Fig. 1a, b). (The four cells in the growth zone that do not 
divide are there for cosmetic reasons; it makes it easier 
to see the dynamics in the growth zone on a time–space 
plot.) Throughout development, the concentrations of 
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the other proteins (i.e. all except the morphogen pro-
tein) are updated according to the genetically specified 
network interactions (Eq.  1). The posterior cells stop 
dividing after 120 divisions (600 steps), after which devel-
opmental dynamics continue for another 600 time steps 
(see also Table 1) so that also the youngest cells reach a 
low morphogen concentration and can converge on a sta-
ble gene expression pattern.

Fitness evaluation By the end of development, the 
expression pattern of the segmentation gene is evaluated 
to determine the number of segments formed outside the 
growth zone (Fig. 1d). Segments should be at least seven 
cells wide, and boundaries between segments should 
consist of a clear transition of the expression of the seg-
mentation gene from a high to a low level, or vice versa, 
within five cells (similar to earlier definitions [6, 8]). 
Given that the tissue grows out to be 134 cells, of which 

nine form the head segment and five form the growth 
zone, the maximum number of segments that can be 
formed is 18. The number of well-formed segments (i.e. 
fulfilling the above requirements) determines an individ-
ual’s fitness. In addition, some penalties are applied. First, 
we require that at least one gene of each type is present 
in the genome; if this requirement is not met, the indi-
vidual is not allowed to reproduce. Second, too-narrow 
segments are penalized. Third, small fitness penalties 
are used for gene and TFBS numbers in order to prevent 
excessive genome growth. Finally, when determining the 
number of segments, rather than considering the expres-
sion of the segmentation gene at the last time step of 
development, we average expression of the segmentation 
gene over the last 100 developmental steps. This averag-
ing helps ensure temporally stable segmental patterning, 
as it will not reward oscillatory segmentation that fails to 

Table 1  parameter values

Parameter Values Remarks

General

Grid size 30× 30

Evolutionary time steps 10,000

Death rate 0.5

Initial # agents 50

Development

Developmental time steps 1200 The number of integration steps

Duration of division period 600 Divisions occur every five time steps

Duration of stabilization period 600 Period without divisions

Integration step size 0.2 Forward Euler integration

Morphogen decay rate 0.025 or 0.2

Initial tissue size 14 cells Of which nine form the head

Gene and protein dynamics

Gene product decay rate 0.3

Hill constant of the TFBS 60

Gene transcription 100

Mutational dynamics

Nr of gene types 16

Gene duplication 0.006 Note that with the gene, also its TFBS are duplicated

Gene deletion 0.009

TFBS weight change 0.001

TFBS type change 0.001

TFBS duplication 0.0015

TFBS deletion 0.004

TFBS innovation 0.001 Spontaneous emergence of new TFBS

Fitness

G: penalty per gene 0.0005

T: penalty per TFBS 0.00005

Control period 100 steps Period over which gene expression stability is measured

U: expression variance penalty 0.1 Penalty per cell that has a variance in segmentation 
gene level > 5.0 during the control period
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converge on a constant spatial pattern. To further ensure 
stability of the final developmental pattern, we apply an 
additional fitness penalty on the number of cells which 
have high variance in their gene expression over time, 
indicating pattern instability within these final 100 devel-
opmental steps. The fitness then becomes emax(0,F)

− 1 , 
where F is:

See Table 1 for parameter values.

Evolution
Initial conditions, mutations and simulations The popu-
lation is initialized with 50 identical individuals. The pop-
ulation resides on a lattice of size 30× 30 , imposing an 
upper boundary of 900 individuals to the population size. 
The genome of the initial individuals contains a single 
copy of each gene, in randomized order and with an aver-
age of two TFBS of random type upstream. Individuals 
compete in a local 7× 7 neighbourhood for the opportu-
nity to reproduce into an empty spot. As mentioned 
before, local competition is more computationally effi-
cient than all-against-all fitness comparisons and better 
reflects the natural situation. An individual’s chance to 
reproduce is proportional to its fitness divided by the 
sum over the fitness values of itself and the other individ-
uals neighbouring the empty position: Pi = fi

∑nb
j=1 fj

 . Death 

occurs with a constant probability d, and individuals 
move on the lattice via Margolus diffusion (two diffusion 
steps, one of each partition, per update step).

Upon reproduction, the genome is mutated via 
duplications and deletions of TFBS and genes (includ-
ing upstream TFBS), with a per-element probability 
(Fig. 1e). TFBS may also mutate their type (which gene 
product binds) and weight (activating or repressing), 
and new TFBS may appear de novo as an innovation. 
Gene duplication results in multiple genes of the same 
type that together determine the concentration of a 
single protein. Note that since we do not include muta-
tions that change gene type, gene duplication cannot be 
followed by subsequent divergence. In order to simplify 
our model and decrease the number of different muta-
tion rates in our simulations, we do not evolve maxi-
mum gene expression rates, protein decay rates or TF 
activation and deactivation thresholds (parameters E, D 
and H in Eq. 1) similar to the approach taken in [8].

(2)

F = nr good segments

− nr narrow segments

− G ∗ gene nr

− T ∗ TFBS nr

− U ∗ nr unstable cells

Analysis pipeline
It is highly non-trivial to derive the patterning strat-
egy of an evolved network merely by looking at net-
work architecture. Even for small networks evolved to 
the simple task of patterning a single stripe along the 
body axis, identical network architectures may lead 
to different patterning dynamics for different regula-
tory interaction strengths [30]. Additionally, patterning 
outcomes will depend on details of how transcription 
factor input is integrated, for example whether multi-
ple activating transcription factors need to be simul-
taneously present (a logical AND gate), or rather that 
a single one suffices (a logical OR gate) to induce the 
downstream gene. Thus, to identify the patterning 
strategy, one needs to simulate the dynamics of gene 
expression resulting from the network, parameter set-
tings and transcription factor integration. For small 
networks, it may still be feasible to determine the pat-
terning strategy by examining the expression dynam-
ics of individual genes; this strategy, however, will not 
provide a solution for larger networks evolved towards 
more complex patterning tasks, such as the one con-
sidered here. Previously, mostly individual case stud-
ies (selected from larger sets of evolutionary outcomes) 
were used to unravel the evolved developmental mech-
anism, analysing only a few network architectures and 
their gene expression dynamics in detail [6, 8, 10, 20, 
31, 32]. However, if we aim to study the circumstances 
that drive evolution of complex oscillator networks 
and/or of sloped oscillatory frequency gradients, large 
numbers of simulation outcomes need to be assessed. 
Detailed manual analysis of each individual simulation 
outcome would be prohibitively slow. Furthermore, 
a different type of approach is needed to determine 
the nature of the evolved segmentation oscillator, i.e. 
whether it generates damped or persistent oscillations, 
and whether oscillation amplitude or period changes 
gradually or abruptly as a function of morphogen con-
centration. Therefore, we developed an automated anal-
ysis pipeline that can determine measures of network 
complexity and oscillatory frequency profiles for large 
numbers of simulations. This pipeline assesses for each 
individual simulation the size of the genome and com-
plexity of the gene regulatory network: the genome is 
pruned beforehand to remove redundant elements and 
obtain the core network responsible for patterning. The 
evolved gene expression dynamics are assessed with 
Fourier analysis, to reveal the oscillatory dynamics at 
various points in the tissue.

Complexity analysis
Our pipeline starts by extracting from each simula-
tion the genome of a single fit individual present in the 



Page 7 of 20Vroomans et al. EvoDevo            (2018) 9:24 

population at the end of evolution. Because an evolved 
genome consists partly of redundant interactions, we 
first prune the genomes via a repeated process of try-
ing to remove genes and binding sites in the genome, 
while keeping the final spatial expression pattern of the 
segmentation gene the same [8]. We will refer to these 
pruned genomes and networks as core genomes and net-
works, as they embody the essential core necessary to 
generate the segmentation pattern. To obtain measures 
for the complexity of the evolved networks, we deter-
mine genome size (number of genes and TFBS), the num-
ber of regulatory loops present in the network encoded 
by the genome, the size (nr of genes) of these loops and 
the number of positive and negative feedback loops. 
All measures are obtained for the core genomes and 
networks.

Fourier frequency profile analysis
Since the model incorporates posterior growth, we 
expect a significant part of the evolutionary runs to 
evolve sequential segmentation, where temporal gene 
expression oscillations are translated into a spatial seg-
ment pattern [10]. To determine the precise nature of 
the oscillations, we apply a fast Fourier transform (FFT, 
C library fftw3.h) to the gene expression dynamics and 
quantify how the amplitude and frequency of oscillations 
change as a function of morphogen concentration. Since 
each cell leaving the posterior growth zone experiences 
the same morphogen decay, such an analysis will reveal 
both the temporal oscillation dynamics of an individual 
cell and the spatial oscillation profile across the tissue at 
a single time point. This method will therefore allow us 
to determine whether, in case of persistent oscillations, a 
sloped frequency profile is present and kinematic oscilla-
tion waves are to be expected.

In principle, one could apply Fourier analysis directly 
to the gene expression dynamics of a cell as it leaves the 
growth zone and experiences morphogen decay. How-
ever, cells leaving the growth zone undergo only few 
oscillations in a short amount of time, and there are only 
a limited number of timepoints per individual morpho-
gen concentration level. This makes it hard to extract the 
precise oscillatory dynamics as a function of morphogen 
concentration, especially when the morphogen decays 
rapidly. Furthermore, such an analysis would not be able 
to distinguish whether, at any given morphogen concen-
tration, oscillations are stable or damped. Therefore, we 
decided to obtain longer time series of gene expression 
by running the evolved networks multiple times, each 
time with a different but constant morphogen concentra-
tion, using a linear set of concentration levels occurring 
along the morphogen gradient (Fig. 2a). This ensures that 

the same amount of data and detail is available for oscil-
lators evolved under fast and slow morphogen decay.

After developing this series of gene expression dynam-
ics for different morphogen concentrations, we apply a 
Fourier analysis for each individual gene for each of these 
different time series (Fig.  2a). Subsequently, we select 
the gene oscillating with the largest amplitude. For this 
gene, we then plot the frequency distributions (ampli-
tude per frequency) for each morphogen concentration 
next to each other in a 2D heat map, creating the so-
called frequency profile (Fig.  2a). We give examples of 
the resulting plots in Fig. 2c, first column. Note how the 
frequency of the oscillations may or may not change with 
the morphogen concentration. A side effect of using this 
Fourier analysis is that, in addition to detecting the fre-
quency of the genetic oscillator as the dominant mode, 
it also detects one or more so-called eigenmodes of this 
frequency, as can be clearly seen in Fig. 2c, second row. 
These eigenmodes have no particular biological meaning.

We also investigate whether the frequency or the 
amplitude of oscillations changes within the growth zone, 
and whether oscillations are damped or persistent. To do 
so, we apply Fourier analysis to different subsections of 
the time series for the high morphogen concentration 
occurring in the growth zone (Fig. 2b). The procedure for 
making the frequency profile heat map remains the same, 
but now the x-axis represents developmental time rather 
than morphogen concentration. Examples can be found 
in Fig. 2c, second column.

Oscillator classification
To compare the evolutionary outcomes under differ-
ent morphogen decay rates, gene expression noise lev-
els and cell–cell signalling, we would like to classify the 
obtained frequency profiles into the three different cate-
gories illustrated in Fig. 2c. First, we distinguish between 
damped and persistent oscillators depending on the Fou-
rier profile obtained from the growth zone. This is done 
by simple visual inspection of the profile, determining 
whether or not oscillations of nonzero amplitude persist 
throughout the time window. Next, within the category 
of persistent oscillators, we determine whether a fre-
quency profile is constant across the morphogen gradient 
or rather has a sloped appearance, which is indicative of 
oscillations slowing down as morphogen levels decrease. 
This classification was formalized as follows: we measure 
the maximum oscillatory frequency occurring for the 
high morphogen concentrations in the posterior as well 
as the minimum frequency of the oscillations just prior 
to the ceasing of oscillations. Next, we determine the dif-
ference between these oscillation frequencies, indicating 
the extent of oscillator slowing across the morphogen 
gradient. We choose a particular threshold value for this 
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frequency difference (0.02). For frequency differences 
larger than this threshold, we classify the oscillator as 
one with a sloped frequency profile, and for smaller fre-
quency differences, we denote it as an oscillator with an 
approximately constant frequency profile.

Results
General evolutionary outcomes
We started with two sets of 60 simulations: one with 
a low and one with a high morphogen decay rate, lead-
ing to shallow and steep gradients, respectively. Nearly 
all simulations resulted in the evolution of a tissue pat-
tern with ten or more segments, where ten is the thresh-
old we use to classify a simulation as successful (59 of 60 
simulations with a shallow gradient, 60 out of 60 simu-
lations with a steep gradient were successful). Of these 

successful simulations, the maximum number of 18 
segments evolved in ten shallow-gradient and 11 steep-
gradient simulations. Typical space–time plots for both 
kinds of gradient are shown in Fig. 3a.

All mechanisms that evolved in our simulations use 
gene expression oscillations (a ’clock’) coupled to a bista-
ble switch to generate segments sequentially, which is in 
line with our previous studies [8, 10]. Due to the non-
linearity of gene expression regulation in our model, a 
positive feedback on the segmentation gene allows for 
bistability to stably maintain either high or low expres-
sion of this gene. In contrast, negative feedback loops 
can generate the oscillations of the clock, provided that 
there is sufficient delay between upregulation and inhi-
bition [33]. Because we did not include the evolution of 
protein decay rates or expression levels, in our model 

a

b

c

Fig. 2  Explanation of the Fourier analysis procedure. a We run the evolved network for 1800 steps with several, fixed concentrations of the 
morphogen. For every gene, we take the Fourier transform of the temporal gene expression dynamics to find the gene’s oscillation frequency for 
that particular morphogen concentration. We plot the Fourier transform data of all concentrations together in one heat map, where the colour 
intensity represents the amplitude at every frequency for every concentration. See also c for a “real-life” example. b For the network run at the 
highest morphogen concentration (representing the growth zone), we also perform a sliding-window analysis: here, we take subsets of the time 
series generated as in a and apply the Fourier transform to every window to visualize the change in frequency and amplitude over time in the 
growth zone. The rest of the procedure is the same as in a. c Examples of frequency profiles from real simulations. The plots in the left column are 
generated as explained in a, and those on the right as in b 
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evolution generates the necessary delays by connecting 
a series of genes into a negative feedback loop. The net-
works evolved in our simulation typically contain multi-
ple interconnected negative feedback loops, with one or 
more of them connected to the bistability motif.

Typically, one or more of the negative feedback loops 
are regulated by the morphogen (Fig.  3b). While the 
morphogen concentration is high, the network keeps 
oscillating between two regions that form the future 
basins of attraction of two unstable states formed by 
the bistable switch (Additional file  1: Fig. S1A). When 
morphogen concentrations drop, oscillations termi-
nate, the two states become stable and the network 

converges to either the high- or low-segmentation gene 
expression state, depending on the phase of the cycle at 
which oscillations stopped. Thus, the bistability allows 
for a translation of oscillations into a stable segmented 
gene expression pattern. This structure is similar to 
the mechanisms that evolved in [8, 10], although the 
pruned networks tend to remain somewhat larger in 
our current model. Variations on this general theme 
do occur; for example, the inhibition by the morpho-
gen may be indirect, or the segmentation gene and 
the genes in the positive feedback loop may be part of 
a negative feedback loop of the oscillator (Additional 
file  2: Fig. S2). Still, the overall mechanism always 

ba

d

c

Fig. 3  Summary of simulation results. a Examples of the resulting space–time plots from an individual at the end of a simulation. The posterior 
growth zone on the right is anchored and the other cells shift position when the tissue grows. The colour reflects the cell type, which is determined 
by the precise combination of expression levels of all genes within a cell. Note the regular alternation of gene expression in the posterior growth 
zone. b Left: a simplified representation of the gene regulatory networks that evolve in our simulations; right; an example of an evolved network 
(pruned, see "Methods"). The clock that generates gene expression oscillations is indicated in blue, the bistable switch in red. c Frequency profile 
of the segmentation gene (wave and constant frequency profiles) or the strongest oscillating gene (damped profile) in three simulations with a 
shallow gradient. d Snapshots of the tissue-level gene expression, corresponding to the profiles in c (blue is high expression, white is low). The 
anterior ends (indicated by the black bars) are aligned for greater clarity. The pictures are taken 12 steps apart
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seems to use morphogen-dependent oscillations and 
translates them into a stable segmentation pattern with 
a bistable switch.

Classifying evolved gene expression dynamics with Fou-
rier analysis We next assessed whether Fourier analysis 
would allow us to distinguish differences in the evolved 
gene expression dynamics of individuals from different 
simulations—despite the similar gene network structure. 
In short, we assessed how the frequency of oscillations 
changes when cells exit the growth zone. We found that 
the gene expression dynamics could be classified into 
roughly three different categories, which display quali-
tatively different frequency profiles (Fig.  3c). In the first 
column, the computed frequency profile clearly shows a 
slope, implying the occurrence of slower oscillations for 
lower morphogen concentrations (we call this a sloped 
frequency profile). In the snapshots of the segmentation 
gene expression that occurs during in silico development 
(Fig.  3d), we indeed see that every segment starts as a 
travelling wave from the posterior and becomes narrower 
and more strongly expressed as it arrives at the anterior. 
Thus, a sloped frequency profile corresponds to travelling 
waves across the tissue, much like those observed in ver-
tebrate development.

In contrast, the individual used as an example in the 
middle column of Fig. 3c has a constant frequency pro-
file, implying that oscillations have a constant frequency 
for a range of morphogen concentrations and then sud-
denly cease for lower morphogen concentrations (a con-
stant frequency profile). The corresponding snapshots in 
Fig. 3d (centre) show that indeed, most of the tissue oscil-
lates synchronously and that only the anterior end shows 
a minor deviation of these dynamics immediately prior to 
segment stabilization. Based on our frequency plot, we 
can deduce that in this small region, the cells are already 
in a non-oscillatory regime, converging towards one of 
the two stable states that allow for a segmented pattern. 
Note that this is different from the individual with travel-
ling waves in the left column, where the anterior tissue 
that is out of sync with the posterior end is in a regime of 
sustained but slower oscillations.

Finally, in the right column of Fig.  3c, we display an 
individual whose frequency profile only shows oscilla-
tory dynamics for the high morphogen concentrations 
that occur in the posterior growth zone. An analysis of 
the temporal dynamics of these growth zone oscillations 
(Fig.  3c) reveals that they are damped, reducing their 
amplitude over time (a damped frequency profile). This is 
confirmed by the snapshots of gene expression dynamics, 
which show a clear decrease in oscillation amplitude in 
the growth zone (Fig. 3d).

In all three cases illustrated above, there is a clear cor-
respondence between the developmental gene expression 

dynamics as suggested by the computed Fourier fre-
quency profile and the actual observed developmental 
dynamics. We therefore conclude that the Fourier fre-
quency analysis is a useful tool for distinguishing differ-
ences in the oscillatory dynamics produced by evolved 
networks. Note that while the above examples are easily 
distinguishable, clear-cut cases, not all evolved mecha-
nisms generate frequency profiles that are easy to inter-
pret or fall into these three clear categories. Some profiles 
have a very modest slope; in other cases, oscillations 
extend beyond the growth zone but for only a limited 
part of the entire morphogen concentration range; and in 
yet other cases, oscillations may be damped for the high 
morphogen concentrations in the growth zone yet persis-
tent for a range of lower concentrations (Additional file 3: 
Fig. S3). Still, also for these more complicated cases, the 
frequency profile reliably reflects the actual oscillatory 
developmental dynamics.

Shallow gradients promote sustained oscillations 
and travelling waves
To test how the length and slope of the morphogen gra-
dient influence the evolution of segmentation, we next 
compared segmentation mechanisms evolved under high 
versus low morphogen decay rates. The two space–time 
plots shown earlier in Fig.  3a illustrate that the spatio-
temporal transient during which cells are outside the 
growth zone but have not yet formed a segment, is con-
siderably longer for shallow morphogen gradients than 
for steep gradients. We measured at which morphogen 
concentration oscillations cease and a stable stripe pat-
tern is formed, the so-called freeze point, and found that 
under a shallow gradient, higher freeze points evolve 
(Fig. 4a). However, the position of this higher freeze point 
in the tissues with a shallow gradient is still further away 
from the growth zone than the position of the near-zero 
freeze point in the tissues with a steep gradient. The 
higher freeze point therefore only partially compensates 
for the longer time and distance required for morphogen 
decay. The question is whether this spatio-temporally 
extended transient—and the accompanying freeze point 
shift—has evolutionary consequences in terms of net-
work complexity and the types of oscillatory dynamics 
that evolve.

To investigate this, we deployed our analysis pipeline 
to dissect genome and network complexity and details 
of the oscillation dynamics. We found that under shal-
low gradients, individuals evolve that have somewhat 
larger core genomes and networks (a small but signifi-
cant difference), especially because of a larger number 
of TFBS (Fig.  4b). The networks evolved under shallow 
gradients also contain significantly more feedback loops, 
in particular the negative FBLs needed to construct 
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Fig. 4  Comparison of genome, network and oscillatory dynamics properties. a Boxplot of the morphogen level at which individuals reach a stable 
expression (after the transition from the oscillatory to the non-oscillatory regime). b Violin plots (vertical histogram) of the number of genes and 
transcription factor binding sites (TFBS) in the pruned genomes of shallow-gradient (dark) and steep-gradient (light) simulations. Dots indicate 
the median value. Mann–Whitney U test between shallow and steep: genes, p = 0.006 ; TFBS, p = 0.0007 . After removing the 14 largest genomes 
from both sets: genes, p = 0.003 ; TFBS, p = 0.0001 (corrected for ties with jitter). c Violin plots of the number of positive and negative feedback 
loops in the pruned networks of the shallow- and steep-gradient simulations. (MW test: pos.FBL, p = 0.005 ; neg.FBL, p = 0.0003 . After removing 
14 genomes with most loops: pos.FBL, p = 0.008 ; neg.FBL, p = 0.0001 ). d Histogram of the number of loops (FFL and FBL) of a certain size. All 
histograms of individual simulations have been summed for this average histogram. e Histogram displaying for all successful individuals their 
frequency difference between oscillations in the growth zone and at the end of the profile, before sustained oscillations cease. (see indication in the 
profile on the left: a nice example of a strongly sloped frequency profile with a large difference). Profiles to the right of the red line are classified as 
“sloped” in Table 2. Note that the damped oscillators are grouped in the bin with 0.0 frequency difference. Bin size: 0.01

Table 2  Prevalence of frequency profiles

Noise level Gradient slope Successful sims. 
(out of 60)

Damped profiles 
(nr and fraction 
of total)

Constant freq. 
profiles

Sloped profiles Not classified

None Shallow 59 3 0.05 36 0.61 16 0.27 4 0.07

Steep 60 14 0.23 36 0.60 7 0.12 3 0.05

Low Shallow 51 1 0.02 20 0.39 20 0.39 10 0.20

Steep 60 5 0.08 44 0.73 8 0.13 3 0.05

Medium Shallow 53 2 0.04 14 0.26 31 0.58 6 0.11

Steep 60 1 0.02 27 0.45 21 0.35 11 0.18

High Shallow 33 0 8 0.24 22 0.67 3 0.09

Steep 58 5 0.09 30 0.58 13 0.22 10 0.17
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an oscillator (Fig.  4c), and these loops tend to be larger 
(Fig. 4d). The variability between individual evolutionary 
trajectories with a shallow gradient is large: the increase 
in average loop number and size for the simulations with 
a shallow gradient is exacerbated by a subset of 14 sim-
ulations (out of a total of 59) which have more than 20 
negative feedback loops. These simulations also have the 
largest genomes (Additional file  4: Fig. S4). Still, differ-
ences in genome size and feedback loops remained sig-
nificant when we compared the two sets after removing 
the 14 simulations from both (see legend Fig. 4).

When we classify the oscillatory dynamics of all simu-
lations into the three broad categories of Fig. 3, the simu-
lation set with a shallow gradient has a lower fraction of 
profiles with damped oscillations (shallow: 0.05 vs. steep: 
0.23) and a higher fraction of sloped frequency profiles 
(0.27 vs. 0.12, Table 2), while the two sets contain a simi-
lar number of simulations with a constant frequency pro-
file (0.61 vs. 0.60). To test the robustness of these results, 
we also measured the frequency difference within a pro-
file (Fig.  4e), rather than categorizing the profiles using 
somewhat-arbitrary cut-offs to distinguish sloped from 
constant profiles. The distribution of these frequency dif-
ferences makes it clear that not only do shallower gradi-
ents more often lead to the evolution of a sloped profile, 
but they also tend to evolve a slightly higher frequency 
difference across their profile (Fig. 4e).

Gradient steepness influences evolutionary innovation 
speed
We established that the steepness of the morphogen gra-
dient influences both the type of oscillations that evolves 
and the network that generates these oscillations. Next, 
we investigated whether this difference in final evolution-
ary outcome is reflected by differences in the evolution-
ary trajectories leading up to these outcomes. We find 
that under a steep gradient, individuals with more than 
ten segments arise very early in evolution (Fig.  5a). In 
contrast, with a shallow gradient, the evolution of indi-
viduals with ten or more segments frequently required a 
much longer evolutionary time span. Much of this time, 
these evolutionary trajectories are either searching for or 
stuck in a primitive, two-segment stage, where the entire 
tissue that is generated by the growth zone expresses the 
segmentation gene while the head does not (Fig.  5b, c). 
These data indicate that it can be considerably harder 

for evolution to discover a segmentation pattern under a 
shallow gradient.

To further investigate this difference, we removed the 
“head” from the initial tissue (see Fig.  1c). As discussed 
in the Methods section, the head region is the part of 
the tissue in which the morphogen gradient is absent 
and no gene expression occurs. As a segment boundary 
is defined as the transition from low to high expression 
of the segmentation gene or vice versa, simply expressing 
the segmentation gene in the non-head part of the tissue 
thus suffices to generate the first segment. Removing the 
head region will make it harder for evolution to discover 
the first segment and may therefore in some cases make 
it impossible to evolve segments. The rate of success of 
evolutionary simulations indeed decreases significantly 
in the absence of a head region and considerably more 
so for shallow than steep morphogen gradients. Only 28 
out of 60 simulations find a solution for a shallow gradi-
ent, while 51 out of 60 simulations evolve a segmented 
pattern with at least ten segments for a steep gradient. 
This further supports our observation that a segmented 
body pattern evolves more easily for steep morphogen 
gradients.

Evolved segmentation mechanisms adapt easily 
to a different morphogen gradient
Having established that both final properties and evolu-
tionary trajectories differ for segmentation mechanisms 
evolved under shallow or steep gradients, we next asked 
whether these differences are functionally relevant. To 
assess this, we extracted successful individuals evolved 
under a steep or shallow morphogen gradient and let 
them continue evolution in the presence of a morphogen 
gradient of the opposite steepness.

For a transition from a shallow to a steep morphogen 
gradient, 22 out of 59 simulations are immediately able 
to generate more than three segments (Fig. 6a). In con-
trast, for the transition from a steep to a shallow gradient, 
only six out of 60 simulations can directly generate more 
than three segments (Fig. 6a). Still, in both cases evolu-
tion generally needs fewer than 30 generations to come 
to a new solution with a similar number of segments as 
before the transition. For the steep to shallow transition, 
three simulations needed more than 1000 time steps to 
restore their prior segmentation pattern.

Fig. 5  A shallow gradient takes longer to find a solution. a Histogram of the number of generations it took for simulations to make ten or more 
stripes. Bin size = 100 . b The waiting time until individuals with two or more stripes appear in the simulation. Bin size = 25 . c The number of 
generations each simulation spent with only two stripes (see space–time plot). Note that the first bin includes those individuals which immediately 
find more than two stripes. Bin size = 50

(See figure on next page.)
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Fig. 6  Switching to another decay rate reveals functionality of evolved differences. a Heat map of the number of segments (ratio original number 
of the transplanted individual/current nr of segments maximum fit individual) after switching the decay rate of all individuals. Dots indicate 
average ratio. b Violin plot of the difference in the number of genes and TFBS in the pruned genome between the start and end of the simulation. 
c Scatterplot with the frequency difference (see Fig. 4d) of the Fourier profile at the start and the end of the decay-switch run. Light is from steep to 
shallow, dark from shallow to steep
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We conclude that a segmentation strategy evolved 
under one type of morphogen gradient is not automati-
cally fully functional under the other type of morphogen 
gradient but requires evolutionary adaptation. Although 
this evolutionary adaptation occurs rapidly and readily, 
the need for it suggests that functional differences exist 
between segmentation mechanisms evolved under dif-
ferent morphogen gradient types. To investigate this, we 
looked at the difference in (pruned) genome size between 
the original individuals and an individuals at the end 
of the evolutionary transition simulation. We observe 
that for a transition from a shallow to a steep gradient, 
genome size is more likely to decrease, while for a tran-
sition from a steep to a shallow gradient, genome size is 
more likely to increase (Fig. 6b). Although the observed 
differences are small, they are in line with the differences 
in genome size we showed in Fig. 4.

Additionally, in Fig. 6c, we illustrate that the frequency 
profile also changes in accordance with our earlier 
results. For the evolutionary transition from a shallow 
to a steep gradient, the slope of the frequency profile is 
slightly more likely to decrease (27 decrease, 20 increase) 
and the number of damped oscillators increases (from 
4 to 18). For the opposite evolutionary transition, the 
slope of the frequency profile is more likely to increase 
(32 increase, 19 decrease), and the number of damped 
oscillators decreases (16–7). Together this further sup-
ports the idea that differences between segmentation 
mechanisms evolved under shallow and steep gradients 
are functionally relevant.

Finally, the results of our transition experiments also 
imply that the evolutionary transition from shallow to 
steep is easier than that from steep to shallow. This agrees 
with our earlier findings on the difference in speed with 
which segmentation patterns evolve under shallow and 
steep gradients.

Gene expression noise promotes sustained oscillations 
and travelling waves
Next, we aimed to find the functional differences between 
the types of segmentation mechanism evolving under 
steep or shallow morphogen gradients. We focused on 
the difference in the number of damped and travelling 
wave oscillators that evolve for steep and shallow mor-
phogen gradients.

In case of persistent oscillators, gene expression 
dynamics follow a stable limit cycle spanning the basins 
of attraction of the future two stable segmentation states 
(Additional file  1: Fig. S1A). Persistent oscillations thus 
allow a stable memorization of the initial oscillation 
phase at the cell’s birth, right until the moment morpho-
gen levels drop and the phase is translated into one of two 
segmentation states. In contrast, for damped oscillations, 

the gene expression dynamics are spiralling inward to the 
equilibrium inside the unstable limit cycle, which nec-
essarily resides in only one of the basins of attraction of 
the segmentation states (Additional file 1: Fig. S1B). This 
causes cells to gradually lose their memory of their origi-
nal oscillation phase, ultimately causing convergence to a 
single differentiated state irrespective of initial phase. We 
hypothesize that steep morphogen gradients suffer less 
from this memory loss as segmentation occurs rapidly, 
when damping has only just begun, and that this explains 
the higher likelihood of damped oscillators evolving 
under these conditions. Following this logic, we specu-
late that adding noise on gene expression could increase 
the sensitivity to phase memory loss: it might bring the 
cell faster to the single stable state by accident. Thus, we 
expect that noise decreases the fraction of simulations in 
which damped oscillators evolve, especially for steep gra-
dient where damped oscillators are common.

Under shallow gradients instead, sloped frequency 
profiles and travelling waves commonly evolve while 
damped oscillators are rare. If we assume that there is 
no inherent difference in functionality between having a 
constant or a sloped frequency profile, the higher num-
ber of sloped profiles could simply be due to the more 
general need for sustained oscillations when the gradient 
is shallow. In that case, a sloped profile represents just 
one of two ways of achieving persistent oscillations. On 
the other hand, if a sloped frequency profile were to have 
any additional functionality, such as its suggested larger 
robustness [23], it may have more space and time to exert 
this functionality under a shallow, more spread out mor-
phogen gradient. If this is the case, increasing selection 
for robustness should increase the likelihood of evolving 
segmentation mechanisms with travelling waves under a 
shallow gradient.

To test the above ideas, we added different levels of 
gene expression noise to our model, thereby induc-
ing implicit selection for robustness. We found that 
the higher the noise, the lower the number of success-
ful simulations; especially, the simulations with a shal-
low gradient were affected (Table  2). Furthermore, with 
higher noise, the size of the evolved genomes increases, 
mostly due to an increase in the number of TFBS, and 
again particularly noticeable for shallow gradients. These 
facts suggest that gene expression noise combined with 
a shallow morphogen gradient requires a more complex 
segmentation mechanism (Fig. 7a).

We find that adding noise greatly increases the fraction 
of simulations with a steep gradient that yield persistent 
oscillations (Table 2). This confirms our hypothesis that 
damped oscillators are only tolerated if limited memo-
rization of oscillator phase is required. Strikingly, for 
simulations with a shallow gradient, all levels of gene 
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expression noise yield an increase in the fraction of 
sloped frequency profiles that evolve (Fig.  7b). For 
medium and high noise levels, the fraction of sloped fre-
quency profiles also increases in simulations with steep 

gradients. Together this confirms the hypothesis that a 
sloped profile increases robustness against noise.

Given that shallow gradients and noise enhance both 
genome size and the occurrence of sloped frequency pro-
files, we investigated the correlation between these two 
properties: perhaps the increase in genome size observed 
with higher noise reflects the requirement for travelling 
waves. In Fig. 8, we plot the frequency difference (a meas-
ure for the slopedness of the frequency profile) against 
the genome size of simulations with different noise lev-
els. (See also Additional file 5: Fig. S5 for plots separated 
by simulation condition, and Additional file  6: Fig. S6 
for correlation with nr of loops.) From this, we conclude 
that no correlation exists between these two properties 
for individual evolutionary outcomes and that they likely 
evolved independently.

Discussion
Segmentation is a major evolutionary innovation exhib-
ited by the vertebrate, arthropod and annelid clades [1, 
2]. In vertebrates, annelids and most arthropods, seg-
ments are generated in an anterior–posterior sequence 
and originate from a localized posterior growth zone. In 
vertebrates and arthropods, this sequential segmentation 
arises from oscillatory gene expression in the posterior 
growth zone, where morphogen levels are high. As cells 
are pushed out of this zone and morphogen levels drop, 
oscillations cease and a temporally stable gene expres-
sion pattern arises that prepatterns the segments. Despite 
this common clock-and-wavefront mechanism, intrigu-
ing species differences exist. While vertebrates and, for 
example, the arthropod Strigamia appear to have a long 
unsegmented zone and extensive kinematic waves, the 
cephalochordate Amphioxus and the beetle Tribolium 
appear to have shorter unsegmented regions and no or 
less extensive travelling of gene expression waves [4, 24]. 
Additionally, in Amphioxus and Tribolium, the oscilla-
tor clock appears to be less complex than in vertebrates 
and other arthropods [25, 26], although this may reflect 
merely a lack of data. It is currently unclear to what 
extent size of the posterior growth zone, oscillator slow-
ing and oscillator complexity are related. Additionally, 
while both oscillator slowing and oscillator complex-
ity have been suggested to contribute to developmental 
robustness, this has not been explicitly investigated.

To investigate these matters, we extended previ-
ous evo-devo models for the evolution of body axis 
segmentation by incorporating growth from a poste-
rior growth zone, with a posteriorly expressed mor-
phogen that forms a gradient through decay. We have 
previously shown how this biases evolution towards 
oscillatory sequential segmentation [10]. In addition, 
we developed an analysis pipeline that allows us to 

a
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Fig. 7  Genome size and oscillatory dynamics for different levels 
of gene expression noise. a Violin plots (vertical histogram) of the 
number of genes and transcription factor binding sites (TFBS) in 
the pruned genomes of shallow-gradient (dark) and steep-gradient 
(light) simulations. b Histogram of the frequency difference between 
oscillations in the growth zone and at the end of the profile
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compute parameters describing network complexity 
and oscillatory dynamics. With this, we investigated the 
effect of different morphogen decay rates, resulting in 
differently sloped morphogen gradients and hence dif-
ferently sized unsegmented zones. In addition, we also 
investigated the influence of gene expression noise, 
resulting in different levels of selection for robustness. 
We showed that in our new model, different types of 
oscillators can evolve, with either damped oscillators or 
oscillators with a constant period frequently evolving. 
In a subset of simulations, we also observed the spon-
taneous evolution of oscillators with a sloped frequency 
profile resulting in a slowing down of oscillations and 
generation of travelling waves towards the anterior 
[14, 34], similar to those seen during, for example, 
vertebrate somitogenesis or Strigamia segmentation. 
Furthermore, for these sloped frequency profiles, we 
find that oscillation frequencies typically decrease by 
50–60% before oscillations cease rather than decreas-
ing all the way to zero, in agreement with experimental 
measurements of vertebrate somitogenesis [35].

We found that a steep morphogen gradient more 
often leads to the evolution of a damped oscillator. 
Under a shallow morphogen gradient, cells go through 
a prolonged transient before oscillations cease, so we 
hypothesize that sustained oscillations may be needed 
to maintain a robust dynamic memory of the oscillator 
phase with which the cell left the growth zone. We also 
show that in the presence of gene expression noise, the 
number of evolved persistent oscillators increases for 

steep morphogen gradients, supporting the notion that 
persistent oscillators contribute to robust patterning.

In addition to differences in the occurrence of damped 
oscillators, shallow gradients also more often yield a 
sloped frequency profile. The likelihood of evolving trav-
elling waves increases in the presence of gene expression 
noise, particularly for shallow gradients but also for steep 
gradients when noise levels are high. Our study thus 
confirms the hypothesis that sloped frequency gradients 
enhance the robustness of sequential segmentation. As to 
the mechanism of this enhanced robustness, we speculate 
that the slowing down of oscillations causes cell dynam-
ics to spend more time inside the basins of attraction of 
the two segmentation states and relatively less time “in 
limbo” in between these two basins where it is less clear 
what to do when oscillations stop. As a consequence, the 
vulnerability to noise decreases.

Finally, we found that genomes evolved under a shallow 
gradient tend to be larger and that networks have more 
and larger feedback loops, with noise contributing to this 
effect. In a switch experiment, we let evolved individuals 
continue evolution in the presence of a gradient of the 
opposite steepness. The results from these simulations 
suggest that the observed differences in genome size and 
frequency profiles, while small, are functionally signifi-
cant, since simulations switched from a shallow to a steep 
morphogen gradient tend to decrease their genome size 
and slope of the frequency profile, and vice versa.

Our results suggest a potentially important role for 
morphogen gradient length in causing the differences in 

Fig. 8  Relation between genome size and frequency difference. The x-axis represents the difference in oscillation frequency between the growth 
zone and the point before oscillations cease (see also Fig. 4d). The y-axis shows genome size as the sum of # genes and TFBS. No clear correlation 
between genome size and frequency difference is apparent. See Additional file 6: Fig. S6 for separate scatterplots for each condition (noise level and 
gradient steepness)
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segmentation processes found between species within 
both the arthropod and chordate clades. For instance, in 
both vertebrates and the centipede Strigamia, segmenta-
tion is preceded by a long spatio-temporal transient that 
is accompanied by extensive kinematic waves of gene 
expression [11, 18, 19, 35–37]. This is reminiscent of the 
outcomes we observed for a shallow morphogen gradi-
ent. Additionally, at least for vertebrates, the segmenta-
tion network is known to be highly complex and consists 
of an entanglement of three signalling pathways: FGF, 
Wnt and Notch [16], again similar to simulation out-
comes under a shallow morphogen gradient.

In contrast, the cephalochordate Amphioxus lays down 
its segments very close to the posterior growth zone, and 
no travelling waves have (thus far) been observed. Addi-
tionally, the FGF pathway does not seem to be involved 
in segmentation [24–26], suggesting a simpler oscillator 
network architecture. Based on the currently available 
data, it thus appears that Amphioxus segmentation more 
closely resembles the in silico mechanisms evolved under 
a steep gradient. On a similar note, in the beetle Tribo-
lium, segment formation occurs relatively close to the 
posterior growth region, and both the travelled distance 
and contraction of kinematic waves are modest, indi-
cating only a slightly sloped frequency profile [4]. Addi-
tionally, the currently available data suggest a relatively 
simple oscillator network [27].

Importantly, our switch experiments demonstrate that 
evolution easily adapts a short gradient mechanism into 
a long gradient mechanism and vice versa. This supports 
the generally accepted notion that at least within a sin-
gle clade segmentation evolved once and that within-
clade differences arose through subsequent divergence of 
the segmentation mechanism. Based on our finding that 
simulations with steep and shallow gradients differ in the 
ease with which segments evolve, we speculate that the 
initial evolution of segmentation within a clade was of 
the steep-gradient type.

Recent studies have suggested that network complexity 
may reflect the need for two distinct oscillators, one with 
a constant frequency and one slowing down according to 
a decreasing frequency profile, with the resulting phase 
difference patterning somite boundaries and polarity [20, 
36]. Intriguingly, in our simulations we did not observe a 
clear correlation between the evolution of high network 
complexity and travelling waves, despite the fact that the 
evolution of both these properties becomes more likely 
under shallow morphogen gradients and gene expression 
noise. These results demonstrate that (further) network 
complexity is not required for a sloped frequency profile. 
Instead, we speculate that network complexity is required 
for oscillator robustness and persistence. Together this 
suggests that network complexity and travelling waves 

could have evolved separately rather than simultaneously 
and may in fact play subtly differing roles.

Obviously, in order to simulate developmental pro-
cesses in many individuals and over many generations in 
a computationally tractable manner, the developmental 
process in our model was highly simplified. Important 
simplifications are the restriction to a one-dimensional 
tissue architecture and the absence of cell motility. These 
would be highly interesting extensions for future studies, 
as two-dimensional tissue architecture likely increases 
the impact of gene expression and morphogen gradient 
noise on segment formation, while cell motility instead 
has been shown to contribute to patterning robustness 
[38]. Importantly, although simplified, our current model 
did contain the necessary ingredients that enabled us to 
investigate the evolution of kinematic waves, in contrast 
to earlier models in which morphogen gradient shapes 
were superimposed and kept constant.

Conclusions
In summary, we have shown that gradient slope and 
length influence the evolution of travelling waves in 
segmentation. First, we showed that shallow gradients 
lead to the evolution of slightly larger genomes and net-
works with more and larger loops as compared to steep 
gradients, and more often to persistent oscillations with 
travelling waves. We also showed that these differences 
are likely to be functional. Finally, we showed that gene 
expression noise increases the likelihood of evolving per-
sistent oscillators, and, especially in the presence of shal-
low gradients, of evolving travelling waves. We therefore 
propose that gradient length and noise may play a role in 
creating the differences observed both between species 
within the chordate and arthropod clades.

Additional files

Additional file 1. Networks with persistent and damped oscillations have 
different origins. A) Persistent oscillations are the result of a stable limit 
cycle around an unstable equilibrium (open blue dot). As long as condi-
tions (e.g. morphogen concentration) stay constant, these oscillations 
continue indefinitely. When the morphogen concentration decreases, 
the system will reach either of the two stable states (red dots), depending 
on the basin of attraction (red zones) in which it finds itself. B) Damped 
oscillations are caused by a stable spiral. Even if all else stays constant, the 
oscillations lose amplitude over time, and the system will end up with 
fixed gene expression. Such a system “loses” the memory of the oscilla-
tions and thus of the phase with which it started.

Additional file 2. Networks with different structures. A) In this network, 
the genes constituting the bistable switch are also part of the oscillator. B) 
The segmentation gene can itself also be part of the oscillator. In this case, 
the genes responsible for generating a bistable switch are hard to identify, 
also due to the size of the network. Both networks are pruned, with the 
requirement that the number of segments should stay the same.
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Additional file 3. Examples of profiles that are harder to classify.

Additional file 4. Larger genomes generate networks with more loops. 
Scatterplot of the number of loops in the network versus genome size. 
The two are clearly correlated, but note that particularly simulations with 
a shallow gradient (red dots) lead to larger genomes and networks with 
more loops.

Additional file 5. The type of frequency profile is not correlated with 
genome size. Scatterplots of the posterior to anterior frequency difference 
in the profile versus genome size, separated by simulation condition 
(gradient steepness and noise level).

Additional file 6. The type of frequency profile is not correlated with the 
number of loops. Scatterplot of the posterior to anterior frequency differ-
ence in the profile versus the number of loops in the network.
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