Hesse R. Untersuchungen über die Organe der Lichtempfindung bei niederen Thieren. II. Die Augen der Plathelminthen, insonderheit der tricladen Turbellarien. Zeitschr f wiss Zool. 1897;62:527–82.
Google Scholar
Jékely G, Colombelli J, Hausen H, Guy K, Stelzer E, Nédélec F, et al. Mechanism of phototaxis in marine zooplankton. Nature. 2008;456:395–9.
Article
PubMed
Google Scholar
Gehring WJ. The evolution of vision. Dev Biol. 2014;3:1–40.
CAS
Google Scholar
Gehring WJ, Ikeo K. Pax 6: mastering eye morphogenesis and eye evolution. Trends Genet. 1999;15:371–7.
Article
CAS
PubMed
Google Scholar
Paulus HF. Eye structure and the monophyly of the Arthropoda. In: Eye structure and the monophyly of the Arthropoda, Arthropod Phylogeny. New York: Van Nostrand Reinhold Company; 1979. p. 299–383.
Google Scholar
Friedrich M. Continuity versus split and reconstitution: exploring the molecular developmental corollaries of insect eye primordium evolution. Dev Biol. 2006;299:310–29.
Article
CAS
PubMed
Google Scholar
Friedrich M. Ancient mechanisms of visual sense organ development based on comparison of the gene networks controlling larval eye, ocellus, and compound eye specification in Drosophila. Arthropod Struct Dev. 2006;35:357–78.
Article
PubMed
Google Scholar
Green P, Hartenstein AY, Hartenstein V. The embryonic development of the Drosophila visual system. Cell Tissue Res. 1993;273:583–98.
Article
CAS
PubMed
Google Scholar
Melzer RR, Paulus HF. Evolutionswege zum Larvalauge der Insekten - Die Stemmata der höheren Dipteren und ihre Abwandlung zum Bolwig-Organ. Z Zoolog Syst Evol Forsch. 1989;27:200–45.
Article
Google Scholar
Younossi-Hartenstein A, Tepass U, Hartenstein V. Embryonic origin of the imaginal discs of the head of Drosophila melanogaster. Dev Genes Evol. 1993;203:60–73.
Google Scholar
Dominguez M, Casares F. Organ specification-growth control connection: new in-sights from the Drosophila eye-antennal disc. Dev Dyn. 2005;232:673–84.
Article
CAS
PubMed
Google Scholar
Royet J, Finkelstein R. Pattern formation in Drosophila head development: the role of the orthodenticle homeobox gene. Development. 1995;121:3561–72.
CAS
PubMed
Google Scholar
Pichaud F, Casares F. Homothorax and iroquois-C genes are required for the establishment of territories within the developing eye disc. Mech Dev. 2000;96:15–25.
Article
CAS
PubMed
Google Scholar
Kumar JP. The molecular circuitry governing retinal determination. Biochim Biophys Acta. 2009;1789:306–14.
Seimiya M, Gehring WJ. The Drosophila homeobox gene optix is capable of inducing ectopic eyes by an eyeless-independent mechanism. Development. 2000;127:1879–86.
CAS
PubMed
Google Scholar
Li Y, Jiang Y, Chen Y, Karandikar U, Hoffman K, Chattopadhyay A, et al. optix functions as a link between the retinal determination network and the dpp pathway to control morphogenetic furrow progression in Drosophila. Dev Biol. 2013;381:50–61.
Article
PubMed Central
CAS
PubMed
Google Scholar
Aguilar-Hidalgo D, Domínguez-Cejudo MA, Amore G, Brockmann A, Lemos MC, Córdoba A, et al. A Hh-driven gene network controls specification, pattern and size of the Drosophila simple eyes. Development. 2013;140:82–92.
Article
CAS
PubMed
Google Scholar
Blanco J, Seimiya M, Pauli T, Reichert H, Gehring WJ. Wingless and Hedgehog signaling pathways regulate orthodenticle and eyes absent during ocelli development in Drosophila. Dev Biol. 2009;329:104–15.
Article
CAS
PubMed
Google Scholar
Blanco J, Pauli T, Seimiya M, Udolph G, Gehring WJ. Genetic interactions of eyes absent, twin of eyeless and orthodenticle regulate sine oculis expression during ocellar development in Drosophila. Dev Biol. 2010;344:1088–99.
Article
CAS
PubMed
Google Scholar
Mardon G, Solomon NM, Rubin GM. Dachshund encodes a nuclear protein required for normal eye and leg development in Drosophila. Development. 1994;120:3473–86.
CAS
PubMed
Google Scholar
Gehring WJ. The genetic control of eye development and its implications for the evolution of the various eye-types. Int J Dev Biol. 2002;46:65–74.
PubMed
Google Scholar
Plaza S, De Jong DM, Gehring WJ, Miller DJ. DNA-binding characteristics of cnidarian Pax-C and Pax-B proteins in vivo and in vitro: no simple relationship with the Pax-6 and Pax-2/5/8 classes. J Exp Zool B Mol Dev Evol. 2003;299:26–35.
Article
PubMed
Google Scholar
Kozmik Z, Daube M, Frei E, Norman B, Kos L, Dishaw LJ, et al. Role of Pax genes in eye evolution: a cnidarian PaxB gene uniting Pax2 and Pax6 functions. Dev Cell. 2003;5:773–85.
Article
CAS
PubMed
Google Scholar
Kozmik Z. Pax genes in eye development and evolution. Curr Opin Genet Dev. 2005;15:430–8.
Article
CAS
PubMed
Google Scholar
Suga H, Tschopp P, Graziussi DF, Stierwald M, Schmid V, Gehring WJ. Flexibly deployed Pax genes in eye development at the early evolution of animals demonstrated by studies on a hydrozoan jellyfish. Proc Natl Acad Sci. 2010;107:14263–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kozmik Z, Holland ND, Kreslova J, Oliveri D, Schubert M, Jonasova K, et al. Pax-Six-Eya-Dach network during amphioxus development: conservation in vitro but context specificity in vivo. Dev Biol. 2007;306:143–59.
Article
CAS
PubMed
Google Scholar
Arendt D, Tessmar K, de Campos-Baptista M-IM, Dorresteijn A, Wittbrodt J. Development of pigment-cup eyes in the polychaete Platynereis dumerilii and evolutionary conservation of larval eyes in Bilateria. Development. 2002;129:1143–54.
CAS
PubMed
Google Scholar
Glardon S, Callaerts P, Halder G, Gehring WJ. Conservation of Pax-6 in a lower chordate, the ascidian Phallusia mammillata. Development. 1997;124:817–25.
CAS
PubMed
Google Scholar
Eriksson BJ, Samadi L, Schmid A. The expression pattern of the genes engrailed, pax6, otd and six3 with special respect to head and eye development in Euperipatoides kanangrensis Reid 1996 (Onychophora: Peripatopsidae). Dev Genes Evol. 2013;223:237–46.
Article
PubMed Central
PubMed
Google Scholar
Yang X, Weber M, ZarinKamar N, Posnien N, Friedrich F, Wigand B, et al. Probing the Drosophila retinal determination gene network in Tribolium (II): The Pax6 genes eyeless and twin of eyeless. Dev Biol. 2009;333:215–27.
Article
CAS
PubMed
Google Scholar
Blackburn DC, Conley KW, Plachetzki DC, Kempler K, Battelle B-A, Brown NL. Isolation and expression of Pax6 and atonal homologues in the American horseshoe crab, Limulus polyphemus. Dev Dyn. 2008;237:2209–19.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fahrenbach WH. The visual system of the horseshoe crab Limulus polyphemus. In: G.H, Bourne JFD, KWJ, editors. International review of cytology. Volume 41. Waltham: Academic Press; 1975. p. 285–349.
Chapter
Google Scholar
Wald G, Krainin JM. The median eye of limulus: an ultraviolet receptor. Proc Natl Acad Sci U S A. 1963;50:1011–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Loria SF, Prendini L. Homology of the lateral eyes of scorpiones: a six-ocellus model. PLoS One. 2014;9:e112913.
Article
PubMed Central
PubMed
Google Scholar
Land MF. The morphology and optics of spider eyes. In: Barth PDFG, editor. Neurobiology of Arachnids. Berlin, Heidelberg: Springer; 1985. p. 53–78.
Chapter
Google Scholar
Shultz J, Pinto-da-Rocha R. Morphology and functional anatomy. In: Pinto-da-Rocha R, Machado G, Giribet G, editors. The biology of Opiliones. Cambridge: Harvard University Press; 2007. p. 14–61.
Google Scholar
Thor S. Einführung in das Studium der Acarina (Milben). In: Dahl F, Dahl M, Bischoff H, editors. Die Tierwelt Deutschlands und der angrenzenden Meeresteile, vol. 22. Jena: Verlag von Gustav Fischer; 1931.
Google Scholar
Wilson M. The functional organisation of locust ocelli. J Comp Physiol. 1978;124:297–316.
Article
Google Scholar
Parry DA. The function of the insect ocellus. J Exp Biol. 1947;24:211–9.
CAS
PubMed
Google Scholar
Hilbrant M, Damen WGM, McGregor AP. Evolutionary crossroads in developmental biology: the spider Parasteatoda tepidariorum. Development. 2012;139:2655–62.
Article
CAS
PubMed
Google Scholar
Posnien N, Zeng V, Schwager EE, Pechmann M, Hilbrant M, Keefe JD, et al. A comprehensive reference transcriptome resource for the common house spider Parasteatoda tepidariorum. PLoS One. 2014;9:e104885.
Article
PubMed Central
PubMed
Google Scholar
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3 - new capabilities and interfaces. Nucl Acids Res. 2012;40:e115–5.
Article
PubMed Central
CAS
PubMed
Google Scholar
Feuda R, Rota-Stabelli O, Oakley TH, Pisani D. The comb jelly opsins and the origins of animal phototransduction. Genome Biol Evol. 2014;6:1964–71.
Article
PubMed Central
CAS
PubMed
Google Scholar
Delroisse J, Ullrich-Lüter E, Ortega-Martinez O, Dupont S, Arnone M-I, Mallefet J, et al. High opsin diversity in a non-visual infaunal brittle star. BMC Genomics. 2014;15:1035.
Article
PubMed Central
PubMed
Google Scholar
Zopf LM, Schmid A, Fredman D, Eriksson BJ. Spectral sensitivity of the ctenid spider Cupiennius salei. J Exp Biol. 2013;216:4103–8.
Article
PubMed Central
PubMed
Google Scholar
Koyanagi M, Nagata T, Katoh K, Yamashita S, Tokunaga F. Molecular evolution of arthropod color vision deduced from multiple opsin genes of jumping spiders. J Mol Evol. 2008;66:130–7.
Article
CAS
PubMed
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC bioinformatics. 2004;5:113.
Article
PubMed Central
PubMed
Google Scholar
Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:754–5.
Article
CAS
PubMed
Google Scholar
Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–4.
Article
CAS
PubMed
Google Scholar
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42.
Article
PubMed Central
PubMed
Google Scholar
Altekar G, Dwarkadas S, Huelsenbeck JP, Ronquist F. Parallel metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics. 2004;20:407–15.
Article
CAS
PubMed
Google Scholar
Pechmann M, Prpic N-M. Appendage patterning in the South American bird spider Acanthoscurria geniculata (Araneae: Mygalomorphae). Dev Genes Evol. 2009;219:189–98.
Article
PubMed
Google Scholar
Prpic N, Schoppmeier M, Damen W: Whole-mount in situ hybridization of spider embryos. Cold Spring Harb Protoc, Vol. 10, 2008. pdb.prot5068
Agnarsson I. Morphological phylogeny of cobweb spiders and their relatives (Araneae, Araneoidea, Theridiidae). Zool J Linn Soc. 2004;141:447–626.
Article
Google Scholar
Stollewerk A, Tautz D, Weller M. Neurogenesis in the spider: new insights from comparative analysis of morphological processes and gene expression patterns. Arthropod Struct Dev. 2003;32:5–16.
Article
PubMed
Google Scholar
Mittmann B, Wolff C. Embryonic development and staging of the cobweb spider Parasteatoda tepidariorum C. L. Koch, 1841 (syn.: Achaearanea tepidariorum; Araneomorphae; Theridiidae). Dev Genes Evol. 2012;222:189–216.
Article
PubMed
Google Scholar
Pechmann M, McGregor AP, Schwager EE, Feitosa NM, Damen WGM. Dynamic gene expression is required for anterior regionalization in a spider. PNAS. 2009;106:1468–72.
Article
PubMed Central
CAS
PubMed
Google Scholar
Akiyama-Oda Y, Oda H. Early patterning of the spider embryo: a cluster of mesenchymal cells at the cumulus produces Dpp signals received by germ disc epithelial cells. Development. 2003;130:1735–47.
Article
CAS
PubMed
Google Scholar
Bitsch C, Bitsch J: Evolution of eye structure and arthropod phylogeny. In Crustacea and Arthropod relationships. Crustacean Issues, Vol. 16; Edited by Koenemann S, Jenner R. CRC Press, Taylor & Francis; 2005; p. 185-214.
Clarkson E, Levi-Setti R, Horváth G. The eyes of trilobites: the oldest preserved visual system. Arthropod Struct Dev. 2006;35:247–59 [Origin and Evolution of Arthropod Visual Systems (Part I)].
Article
PubMed
Google Scholar
Dohle W. Are the insects terrestrial crustaceans? A discussion of some new facts and arguments and the proposal of the proper name “Tetraconata” for the monophyletic unit Crustacea + Hexapoda. In: Annales de la Société entomologique de France. Volume 37. Paris: Société entomologique de France; 2001. p. 85–103.
Google Scholar
Pignoni F, Hu B, Zavitz KH, Xiao J, Garrity PA, Zipursky SL. The eye-specification proteins So and Eya form a complex and regulate multiple steps in drosophila eye development. Cell. 1997;91:881–91.
Article
CAS
PubMed
Google Scholar
Bonini NM, Leiserson WM, Benzer S. The eyes absent gene: genetic control of cell survival and differentiation in the developing Drosophila eye. Cell. 1993;72:379–95.
Article
CAS
PubMed
Google Scholar
Cheyette BN, Green PJ, Martin K, Garren H, Hartenstein V, Zipursky SL. The Drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system. Neuron. 1994;12:977–96.
Article
CAS
PubMed
Google Scholar
Vandendries ER, Johnson D, Reinke R. Orthodenticle is required for photoreceptor cell development in the Drosophila eye. Dev Biol. 1996;173:243–55.
Article
CAS
PubMed
Google Scholar
Tahayato A, Sonneville R, Pichaud F, Wernet MF, Papatsenko D, Beaufils P, et al. Otd/Crx, a dual regulator for the specification of ommatidia subtypes in the Drosophila retina. Dev Cell. 2003;5:391–402.
Article
CAS
PubMed
Google Scholar
Hill RE, Favor J, Hogan BLM, Ton CCT, Saunders GF, Hanson IM, et al. Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature. 1991;354:522–5.
Article
CAS
PubMed
Google Scholar
Walther C, Gruss P. Pax-6, a murine paired box gene, is expressed in the developing CNS. Development. 1991;113:1435–49.
CAS
PubMed
Google Scholar
Ton CCT, Hirvonen H, Miwa H, Weil MM, Monaghan P, Jordan T, et al. Positional cloning and characterization of a paired box- and homeobox-containing gene from the aniridia region. Cell. 1991;67:1059–74.
Article
CAS
PubMed
Google Scholar
Sun H, Gilbert DJ, Copeland NG, Jenkins NA, Nathans J. Peropsin, a novel visual pigment-like protein located in the apical microvilli of the retinal pigment epithelium. Proc Natl Acad Sci. 1997;94:9893–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tarttelin EE, Bellingham J, Bibb LC, Foster RG, Hankins MW, Gregory-Evans K, et al. Expression of opsin genes early in ocular development of humans and mice. Exp Eye Res. 2003;76:393–6.
Article
CAS
PubMed
Google Scholar
Koyanagi M, Terakita A, Kubokawa K, Shichida Y. Amphioxus homologs of Go-coupled rhodopsin and peropsin having 11-cis- and all-trans-retinals as their chromophores. FEBS Lett. 2002;531:525–8.
Article
CAS
PubMed
Google Scholar
Nagata T, Koyanagi M, Tsukamoto H, Terakita A. Identification and characterization of a protostome homologue of peropsin from a jumping spider. J Comp Physiol A. 2010;196:51–9.
Article
CAS
Google Scholar
Eriksson BJ, Fredman D, Steiner G, Schmid A. Characterisation and localisation of the opsin protein repertoire in the brain and retinas of a spider and an onychophoran. BMC Evol Biol. 2013;13:186.
Article
PubMed Central
PubMed
Google Scholar
Battelle B-A, Kempler K, Saraf SR, Marten CE, Dugger DR, Spiser DI, et al. Opsins in Limulus eyes: characterization of three visible light-sensitive opsins unique to and co-expressed in median eye photoreceptors and a peropsin/RGR that is expressed in all eyes. J Exp Biol. 2015;218:466–79.
Article
PubMed
Google Scholar