Jain R, Engleka KA, Rentschler SL, Manderfield LJ, Li L, Yuan L, et al. Cardiac neural crest orchestrates remodeling and functional maturation of mouse semilunar valves. J Clin Investig. 2011;121:422–30. doi:10.1172/JCI44244.
Article
CAS
PubMed
Google Scholar
Baardman ME, Zwier MV, Wisse LJ, Gittenberger-de Groot AC, Kerstjens-Frederikse WS, Hofstra RM, et al. Common arterial trunk and ventricular non-compaction in Lrp2 knockout mice indicate a crucial role of LRP2 in cardiac development. Dis Models Mech. 2016;9:413–25. doi:10.1242/dmm.022053.
Article
CAS
Google Scholar
Anderson RH, Chaudhry B, Mohun TJ, Bamforth SD, Hoyland D, Phillips HM, et al. Normal and abnormal development of the intrapericardial arterial trunks in humans and mice. Cardiovasc Res. 2012;95:108–15. doi:10.1093/cvr/cvs147.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brewer S, Jiang X, Donaldson S, Williams T, Sucov HM. Requirement for AP-2α in cardiac outflow tract morphogenesis. Mech Dev. 2002;110:139–49.
Article
CAS
PubMed
Google Scholar
Jiang X, Rowitch DH, Soriano P, McMahon AP, Sucov HM. Fate of the mammalian cardiac neural crest. Development. 2000;127:1607–16.
CAS
PubMed
Google Scholar
Waldo KL, Hutson MR, Ward CC, Zdanowicz M, Stadt HA, Kumiski D, et al. Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart. Dev Biol. 2005;281:78–90. doi:10.1016/j.ydbio.2005.02.012
Article
CAS
PubMed
Google Scholar
Graham A, Richardson J. Developmental and evolutionary origins of the pharyngeal apparatus. EvoDevo. 2012;3:24. doi:10.1186/2041-9139-3-24.
Article
PubMed
PubMed Central
Google Scholar
Poelman CAC. Note sur systeme circulatoire des Crocodilien. Bull Acad Belg. 1854;21:67–72.
Google Scholar
Le Lièvre CS, Le Douarin NM. Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J Embryol Exp Morphol. 1975;34:125–54.
PubMed
Google Scholar
Kirby ML, Gale TF, Stewart DE. Neural crest cells contribute to normal aorticopulmonary septation. Science. 1983;220:1059–61.
Article
CAS
PubMed
Google Scholar
Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R, Norris RA, Kern MJ, Eisenberg CA, et al. The outflow tract of the heart is recruited from a novel heart-forming field. Dev Biol. 2001;238:97–109. doi:10.1006/dbio.2001.0409.
Article
CAS
PubMed
Google Scholar
Waldo KL, Kumiski DH, Wallis KT, Stadt HA, Hutson MR, Platt DH, et al. Conotruncal myocardium arises from a secondary heart field. Development. 2001;128:3179–88.
CAS
PubMed
Google Scholar
Kelly RG, Brown NA, Buckingham ME. The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell. 2001;1:435–40. doi:10.1016/S1534-5807(01)00040-5.
Article
CAS
PubMed
Google Scholar
Gittenberger-de Groot AC, Winter EM, Bartelings MM, Goumans MJ, DeRuiter MC, Poelmann RE. The arterial and cardiac epicardium in development, disease and repair. Differentiation. 2012;84:41–53. doi:10.1016/j.diff.2012.05.002.
Article
CAS
PubMed
Google Scholar
Pérez-Pomares JM, Phelps A, Sedmerova M, Wessels A. Epicardial-like cells on the distal arterial end of the cardiac outflow tract do not derive from the proepicardium but are derivatives of the cephalic pericardium. Dev Dyn. 2003;227:56–68. doi:10.1002/dvdy.10284.
Article
PubMed
Google Scholar
Poelmann RE, Mikawa T, Gittenberger-de Groot AC. Neural crest cells in outflow tract septation of the embryonic chicken heart: differentiation and apoptosis. Dev Dyn. 1998;212:373–84. doi:10.1002/(SICI)1097-0177(199807)212:3<373:AID-AJA5>3.0.CO;2-E.
Article
CAS
PubMed
Google Scholar
Webb S, Qayyum SR, Anderson RH, Lamers WH, Richardson MK. Septation and separation within the outflow tract of the developing heart. J Anat. 2003;202:327–42. doi:10.1046/j.1469-7580.2003.00168.x.
Article
PubMed
PubMed Central
Google Scholar
Harmon AW, Nakano A. Nk2–5 lineage tracing visualizes the distribution of second heart field-derived aortic smooth muscle. Genesis. 2013;51:862–9. doi:10.1002/dvg.22721.
Article
PubMed
PubMed Central
Google Scholar
Poelmann RE, Gittenberger-de Groot AC, Vicente-Steijn R, Wisse LJ, Bartelings MM, Everts S, et al. Evolution and development of ventricular septation in the amniote heart. PLoS ONE. 2014;9:e106569. doi:10.1371/journal.pone.0136025.
Article
PubMed
PubMed Central
Google Scholar
Rathke H. Untersuchungen Ueber die Aortenwurzeln und die von ihnen ausgehenden Arterien der Saurier. Wien: Kaiserlich-Koeniglichen Hof- and Staatdruckerei; 1857. p. 1–94.
Google Scholar
O’Donoghue CH. A note on the ductus caroticus and ductus arteriosus and their distribution in the reptilia. J Anat. 1917;51:137–49.
PubMed
PubMed Central
Google Scholar
Zug GR. The distribution and patterns of the major arteries of the iguanids and comments on the intergeneric relationships of Iguanids (Reptilia: Lacertilia). Smithson Contr Zool. 1971;83:1–23.
Article
Google Scholar
Farmer CG. On the evolution of arterial vascular patterns of tetrapods. J Morphol. 2011;272:1325–41. doi:10.1002/jmor.10986.
Article
CAS
PubMed
Google Scholar
Molin DG, DeRuiter MC, Wisse LJ, Azhar M, Doetschman T, Poelmann RE, et al. Altered apoptosis pattern during pharyngeal arch artery remodelling is associated with aortic arch malformations in Tgfbeta2 knock-out mice. Cardiovasc Res. 2002;56:312–22. doi:10.1016/S0008-6363(02)00542-4.
Article
CAS
PubMed
Google Scholar
Bökenkamp R, van Brempt R, van Munsteren JC, van den Wijngaert I, de Hoogt R, Finos L, Goeman J, et al. Dlx1 and Rgs5 in the ductus arteriosus: vessel-specific genes identified by transcriptional profiling of laser-capture microdissected endothelial and smooth muscle cells. PLoS ONE. 2014;9:e86892. doi:10.1371/journal.pone.0086892.
Article
PubMed
PubMed Central
Google Scholar
Goodrich ES. On the classification of the Reptilian. Proc R Soc B. 1916;89:261–76.
Article
Google Scholar
Holmes EB. A reconsideration of the phylogeny of the tetrapod heart. J Morph. 1975;147:209–28.
Article
Google Scholar
Werneburg I, Sánchez-Villagra MR. Timing of organogenesis support basal position of turtles in the amniote tree of life. BMC Evol Biol. 2009;23(9):82. doi:10.1186/1471-2148-9-82.
Article
Google Scholar
Lyson TR, Sperling EA, Heimberg AM, Gauthier JA, King BL, Peterson KJ. MicroRNAs support a turtle+ lizard clade. Biol Lett. 2012;8:104–7. doi:10.1098/rsbl.2011.0477.
Article
CAS
PubMed
Google Scholar
Chiari Y, Cahais V, Galtier N, Delsuc F. Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biol. 2012;10:65. doi:10.1186/1741-7007-10-65.
Article
PubMed
PubMed Central
Google Scholar
Crawford NG, Faircloth BC, McCormack JE, Brumfield RT, Winker K, Glenn TC. More than 1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs. Biol Lett. 2012;23(8):783–6. doi:10.1098/rsbl.2012.0331.
Article
Google Scholar
Shaffer HB, Minx P, Warren DE, Shedlock AM, Thomson RC, Valenzuela N, et al. The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biol. 2013;14:R28. doi:10.1186/gb-2013-14-3-r28.
Article
PubMed
Google Scholar
Wang Z, Pascual-Anaya J, Zadissa A, Li W, Niimura Y, Huang Z, et al. The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat Genet. 2014;2013(45):701–6. doi:10.1038/ng.2615
(Erratum in: Nat Genet. 2014;46:657).
Google Scholar
Green RE, Braun EL, Armstrong J, Earl D, Nguyen N, Hickey G, et al. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science. 2014;346:1254449. doi:10.1126/science.1254449.
Article
PubMed
PubMed Central
Google Scholar
Hogers B, DeRuiter MC, Baasten AM, Gittenberger-de Groot AC, Poelmann RE. Intracardiac blood flow patterns related to the yolk sac circulation of the chick embryo. Circ Res. 1995;76:871–7. doi:10.1161/01.RES.76.5.871.
Article
CAS
PubMed
Google Scholar
Hogers B, DeRuiter MC, Gittenberger-de Groot AC, Poelmann RE. Unilateral vitelline vein ligation alters intracardiac blood flow patterns and morphogenesis in the chick embryo. Circ Res. 1997;80:473–81. doi:10.1161/01.RES.80.4.473.
Article
CAS
PubMed
Google Scholar
Hove JR, Köster RW, Forouhar AS, Acevedo-Bolton G, Fraser SE, Gharib M. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature. 2003;421:172–7. doi:10.1038/nature01282.
Article
CAS
PubMed
Google Scholar
Kowalski WJ, Dur O, Wang Y, Patrick MJ, Tinney JP, Keller BB, et al. Critical transitions in early embryonic aortic arch patterning and hemodynamics. PLoS ONE. 2013;8:e60271. doi:10.1371/journal.pone.0060271.
Article
CAS
PubMed
PubMed Central
Google Scholar
Groenendijk BC, Hierck BP, Gittenberger-De Groot AC, Poelmann RE. Development-related changes in the expression of shear stress responsive genes KLF-2, ET-1, and NOS-3 in the developing cardiovascular system of chicken embryos. Dev Dyn. 2004;230:57–68. doi:10.1002/dvdy.20029.
Article
CAS
PubMed
Google Scholar
Sanger TJ, Losos JB, Gibson-Brown JJ. A developmental staging series for the lizard genus Anolis: a new system for the integration of evolution, development, and ecology. J Morphol. 2008;269:129–37. doi:10.1002/jmor.10563.
Article
PubMed
Google Scholar
Yntema CL. A series of stages in the embryonic development of Chelydra serpentina. J Morphol. 1968;125:219–51.
Article
CAS
PubMed
Google Scholar
Ferguson MWJ. Reproductive embryology and embryology of the crocodilians. In: Gans C, Fillett F, Maderson PFA, editors. Biology of the reptilia. New York: Wiley; 1985. p. 330–491.
Google Scholar
Tokita M, Kuratani S. Normal embryonic stages of the Chinese softshelled turtle Pelodiscus sinensis (Trionychidae). Zool Sci. 2001;18:705–15.
Article
Google Scholar
Werneburg I. A standard system to study vertebrate embryos. PLoS ONE. 2009;4:e5887. doi:10.1371/journal.pone.0005887.
Article
PubMed
PubMed Central
Google Scholar
Hamburger V, Hamilton HL. A series of normal stages in the development of the chick embryo. J Morphol. 1951;88:49–92.
Article
CAS
PubMed
Google Scholar
Richardson MK. Heterochrony and the phylotypic period. Dev Biol. 1995;172:412–21. doi:10.1006/dbio.1995.8041.
Article
CAS
PubMed
Google Scholar
Hohenstein P, Hastie ND. The many facets of the Wilms’ tumour gene, WT1. Hum Mol Genet. 2006;15:R196–201. doi:10.1093/hmg/ddl196.
Article
CAS
PubMed
Google Scholar
Dong L, Pietsch S, Englert C. Towards an understanding of kidney diseases associated with WT1 mutations. Kidney Int. 2015;88:684–90. doi:10.1038/ki.2015.198.
Article
CAS
PubMed
PubMed Central
Google Scholar
López D, Durán AC, de Andrés AV, Guerrero A, Blasco M, Sans-Coma V. Formation of cartilage in the heart of the Spanish terrapin, Mauremys leprosa (Reptilia, Chelonia). J Morphol. 2003;258(1):97–105.
Article
PubMed
Google Scholar
Bertens LM, Richardson MK, Verbeek FJ. Analysis of cardiac development in the turtle Emys orbicularis (Testudines: Emidydae) using 3-D computer modeling from histological sections. Anat Rec. 2010;293:1101–14. doi:10.1002/ar.21162.
Article
Google Scholar
Wyneken J. Normal reptile heart morphology and function. Vet Clin North Am Exot Anim Pract. 2009;12:51–63, vi. doi:10.1016/j.cvex.2008.08.001.
Crawford NG, Parham JF, Sellas AB, Faircloth BC, Glenn TC, Papenfuss TJ, et al. A phylogenomic analysis of turtles. Mol Phylogenet Evol. 2015;83:250–7. doi:10.1016/j.ympev.2014.10.021.
Article
PubMed
Google Scholar
Seymour RS, Bennett-Stamper CL, Johnston SD, Carrier DR, Grigg GC. Evidence for endothermic ancestors of crocodiles at the stem of archosaur evolution. Physiol Biochem Zool. 2004;77:1051–67. doi:10.1086/422766.
Article
PubMed
Google Scholar
Grewal N, DeRuiter MC, Jongbloed MR, Goumans MJ, Klautz RJ, Poelmann RE, et al. Normal and abnormal development of the aortic wall and valve: correlation with clinical entities. Neth Heart J. 2014;22:363–9. doi:10.1007/s12471-015-0784-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abu-Issa R. Heart fields: spatial polarity and temporal dynamics. Anat Rec. 2014;297:175–82. doi:10.1002/ar.22831.
Article
Google Scholar
Norden J, Grieskamp T, Lausch E, van Wijk B, van den Hoff MJ, Englert C, et al. Wt1 and retinoic acid signaling in the subcoelomic mesenchyme control the development of the pleuropericardial membranes and the sinus horns. Circ Res. 2010;106:1212–20. doi:10.1161/CIRCRESAHA.110.217455.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gittenberger-de Groot AC, Calkoen EE, Poelmann RE, Bartelings MM, Jongbloed MR. Morphogenesis and molecular considerations on congenital cardiac septal defects. Ann Med. 2014;46:640–52. doi:10.3109/07853890.2014.959557.
Article
CAS
PubMed
Google Scholar
Keyte A, Hutson MR. The neural crest in cardiac congenital anomalies. Differentiation. 2012;84:25–40. doi:10.1016/j.diff.2012.04.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keyte AL, Alonzo-Johnsen M, Hutson MR. Evolutionary and developmental origins of the cardiac neural crest: building a divided outflow tract. Birth Defects Res C Embryo Today. 2014;102:309–23. doi:10.1002/bdrc.21076.
Article
CAS
PubMed
PubMed Central
Google Scholar
White FN. Circulation in the reptilian heart (Caiman sclerops). Anat Rec. 1956;125:417–31.
Article
CAS
PubMed
Google Scholar
Axelsson M, Franklin CE, Lofman CO, Nilsson S, Grigg GS. Dynamic anatomical study of cardiac shunting in crocodiles using high-resolution angioscopy. J Exp Biol. 1996;199:359–65.
CAS
PubMed
Google Scholar
High FA, Jain R, Stoller JZ, Antonucci NB, Lu MM, Loomes KM, et al. Murine Jagged1/Notch signaling in the second heart field orchestrates Fgf8 expression and tissue-tissue interactions during outflow tract development. J Clin Investig. 2009;119:1986–96. doi:10.1172/JCI38922.
CAS
PubMed
PubMed Central
Google Scholar
Gittenberger-de Groot AC, Bartelings MM, Poelmann RE, Haak MC, Jongbloed MR. Embryology of the heart and its impact on understanding fetal and neonatal heart disease. Semin Fetal Neonatal Med. 2013;18:237–44. doi:10.1016/j.siny.2013.04.008.
Article
PubMed
Google Scholar
Poelmann RE, Gittenberger-de Groot AC. Apoptosis as an instrument in cardiovascular development. Birth Defects Res C Embryo Today. 2005;75:305–13. doi:10.1002/bdrc.20058.
Article
CAS
PubMed
Google Scholar
Keyes WM, Sanders EJ. Regulation of apoptosis in the endocardial cushions of the developing chick heart. Am J Physiol Cell Physiol. 2002;282:C1348–60. doi:10.1152/ajpcell.00509.2001.
Article
CAS
PubMed
Google Scholar
Fisher SA, Langille BL, Srivastava D. Apoptosis during cardiovascular development. Circ Res. 2010;87:856–64. doi:10.1161/01.RES.87.10.856.
Article
Google Scholar
Cooley MA, Kern CB, Fresco VM, Wessels A, Thompson RP, McQuinn TC, et al. Fibulin-1 is required for morphogenesis of neural crest-derived structures. Dev Biol. 2008;319:336–45. doi:10.1016/j.ydbio.2008.04.029.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schaefer KS, Doughman YQ, Fisher SA, Watanabe M. Dynamic patterns of apoptosis in the developing chicken heart. Dev Dyn. 2004;229:489–99. doi:10.1002/dvdy.10463.
Article
PubMed
Google Scholar
Eralp I, Lie-Venema H, DeRuiter MC, van den Akker NM, Bogers AJ, Mentink MMT, et al. Coronary artery and orifice development is associated with proper timing of epicardial outgrowth and correlated Fas-ligand-associated apoptosis patterns. Circ Res. 2005;8(96):526–34. doi:10.1161/01.RES.0000158965.34647.4e.
Article
Google Scholar
Winokur RM. Adaptive modifications of buccal mucosae in turtles. Am Zool. 1973;13:1347–8.
Google Scholar
Ernst CH, Lovich JE. Turtles of the United States and Canada. 2nd ed. Baltimore: Johns Hopkins University Press; 2009. p. 641.
Google Scholar
Ip YK, Loong AM, Lee SM, Ong JL, Wong WP, Chew SF. The Chinese soft-shelled turtle, Pelodiscus sinensis, excretes urea mainly through the mouth instead of the kidney. J Exp Biol. 2012;215:3723–33. doi:10.1242/jeb.068916.
Article
CAS
PubMed
Google Scholar
Poelmann RE, Gittenberger-de Groot AC, Mentink MM, Bökenkamp R, Hogers B. Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circ Res. 1993;73:559–68. doi:10.1161/01.RES.73.3.559.
Article
CAS
PubMed
Google Scholar
Red-Horse K, Ueno H, Weissman IL, Krasnow MA. Coronary arteries form by developmental reprogramming of venous cells. Nature. 2010;464:549–53. doi:10.1038/nature08873.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bogers AJ, Gittenberger-de Groot AC, Poelmann RE, Péault BM, Huysmans A. Development of the origin of the coronary arteries, a matter of ingrowth or outgrowth? Anat Embryol. 1989;180:437–41.
Article
CAS
PubMed
Google Scholar
Tian X, Hu T, He L, Zhang H, Huang X, Poelmann RE, et al. Peritruncal coronary endothelial cells contribute to proximal coronary artery stems and their aortic orifices in the mouse heart. PLoS ONE. 2013;8:e80857. doi:10.1371/journal.pone.0080857.
Article
PubMed
PubMed Central
Google Scholar
Théveniau-Ruissy M, Pérez-Pomares JM, Parisot P, Baldini A, Miquerol L, Kelly RG. Coronary stem development in wild-type and Tbx1 null mouse hearts. Dev Dyn. 2016;245:445–59. doi:10.1002/dvdy.24380.
Article
PubMed
Google Scholar
Jensen B, Moorman AF, Wang T. Structure and function of the hearts of lizards and snakes. Biol Rev Camb Philos Soc. 2014;89:302–36. doi:10.1111/brv.12056.
Article
PubMed
Google Scholar