Wagner DL, Liebherr JK. Flightlessness in insects. Trends Ecol Evol. 1992;7:216–20.
Article
CAS
PubMed
Google Scholar
Kingsolver JG, Koehl M. Selective factors in the evolution of insect wings. Annu Rev Entomol. 1994;39:425–51.
Article
Google Scholar
Daly HV, Doyen JT, Ehrlich PR. Introduction to insect biology and diversity: McGraw-Hill Book Company.; 1978.
Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346:763–7.
Article
CAS
PubMed
Google Scholar
Medved V, Marden JH, Fescemyer HW, Der JP, Liu J, Mahfooz N, et al. Origin and diversification of wings: insights from a neopteran insect. Proc Natl Acad Sci USA. 2015;112:15946–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roff DA. The evolution of flightlessness: is history important? Evol Ecol. 1994;8:639–57.
Article
Google Scholar
Trautwein MD, Wiegmann BM, Beutel R, Kjer KM, Yeates DK. Advances in insect phylogeny at the dawn of the postgenomic era. Annu Rev Entomol. 2012;57:449–68.
Article
CAS
PubMed
Google Scholar
Roff DA. The evolution of wing dimorphism in insects. Evolution. 1986;40:1009–20.
Article
PubMed
Google Scholar
Roff DA, Bradford MJ. Quantitative genetics of the trade-off between fecundity and wing dimorphism in the cricket Allonemobius socius. Heredity. 1996;76:178–85.
Article
Google Scholar
Roff DA, Fairbairn DJ. Wing dimorphisms and the evolution of migratory polymorphisms among the Insecta. Am Zool. 1991;31:243–51.
Article
Google Scholar
Zera AJ, Denno RF. Physiology and ecology of dispersal polymorphism in insects. Annu Rev Entomol. 1997;42:207–30.
Article
CAS
PubMed
Google Scholar
Vogler AP, Timmermans MJ. Speciation: don’t fly and diversify? Curr Biol. 2012;22:R284–6.
Article
CAS
PubMed
Google Scholar
Harrison RG. Dispersal polymorphisms in insects. Annu Rev Ecol Syst. 1980;11:95–118.
Article
Google Scholar
Roff DA. Habitat persistence and the evolution of wing dimorphism in insects. Am Nat. 1994;144:772–98.
Article
Google Scholar
Denno RF, Roderick GK, Peterson MA, Huberty AF, Dobel HG, Eubanks MD, et al. Habitat persistence underlies intraspecific variation in the dispersal strategies of planthoppers. Ecol Monogr. 1996;66:389–408.
Article
Google Scholar
Roff DA. The evolution of flightlessness in insects. Ecol Monogr. 1990;60:389–421.
Article
Google Scholar
Hodkinson ID. Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev. 2005;80:489–513.
Article
PubMed
Google Scholar
McCulloch GA, Foster BJ, Ingram T, Waters JM. Insect wing loss is tightly linked to the treeline: evidence from a diverse stonefly assemblage. Ecography. 2019;42:811–3.
Article
Google Scholar
McCulloch GA, Foster BJ, Dutoit L, Ingram T, Hay E, Veale AJ, et al. Ecological gradients drive insect wing loss and speciation: the role of the alpine treeline. Mol Ecol. 2019;28(13):3141–50.
PubMed
Google Scholar
McCulloch GA, Wallis GP, Waters JM. Do insects lose flight before they lose their wings? Population genetic structure in subalpine stoneflies. Mol Ecol. 2009;18:4073–87.
Article
CAS
PubMed
Google Scholar
Dussex N, Chuah A, Waters JM. Genome-wide SNPs reveal fine-scale differentiation among wingless alpine stonefly populations and introgression between winged and wingless forms. Evolution. 2016;70:38–47.
Article
PubMed
Google Scholar
Van Belleghem SM, Roelofs D, Hendrickx F. Evolutionary history of a dispersal-associated locus across sympatric and allopatric divergent populations of a wing-polymorphic beetle across Atlantic Europe. Mol Ecol. 2015;24:890–908.
Article
PubMed
Google Scholar
Aukema B. Wing-length determination in two wing-dimorphic Calathus species (Coleoptera: Carabidae). Hereditas. 1990;113:189–202.
Article
Google Scholar
Jackson DJ. XXVII.—The inheritance of long and short wings in the weevil, Sitona hispidula, with a discussion of wing reduction among beetles. Earth Environ Sci. 1928;55:665–735.
Google Scholar
Lindroth CH. Inheritance of wing dimorphism in Pterostichus anthracinus Ill. Hereditas. 1946;32:37–40.
Article
CAS
PubMed
Google Scholar
Harrison R. Flight polymorphism in the field cricket Gryllus pennsylvanicus. Oecologia. 1979;40:125–32.
Article
CAS
PubMed
Google Scholar
Rose D. Dispersal and quality in populations of Cicadulina species (Cicadellidae). J Anim Ecol. 1972;1:589–609.
Article
Google Scholar
Zera AJ. The endocrine regulation of wing polymorphism in insects: state of the art, recent surprises, and future directions. Integr Comp Biol. 2003;43:607–16.
Article
CAS
PubMed
Google Scholar
Lin X, Yao Y, Wang B, Emlen DJ, Lavine LC. Ecological trade-offs between migration and reproduction are mediated by the nutrition-sensitive insulin-signaling pathway. Int J Biol Sci. 2016;12:607–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu H-J, Xue J, Lu B, Zhang X-C, Zhuo J-C, He S-F, et al. Two insulin receptors determine alternative wing morphs in planthoppers. Nature. 2015;519:464–7.
Article
CAS
PubMed
Google Scholar
Honěk A. Factors and consequences of a non-functional alary polymorphism in Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae). Res Popul Ecol. 1995;37:111–8.
Article
Google Scholar
Zhou X, Chen J, Shike Liang M, Wang F. Differential DNA methylation between two wing phenotypes adults of Sogatella furcifera. Genesis. 2013;51:819–26.
Article
CAS
PubMed
Google Scholar
Liang S-K, Liang Z-Q, Zhou X-S, Chen J-L, Li G-H, Wang F-H. CpG methylated ribosomal RNA genes in relation to wing polymorphism in the rice pest Sogatella furcifera. J Asia-Pac Entomol. 2015;18:471–5.
Article
CAS
Google Scholar
Williams JA, Carroll SB. The origin, patterning and evolution of insect appendages. BioEssays. 1993;15:567–77.
Article
Google Scholar
Azpiazu N, Morata G. Function and regulation of homothorax in the wing imaginal disc of Drosophila. Development. 2000;127:2685–93.
CAS
PubMed
Google Scholar
Consortium TGS. The genome of the model beetle and pest Tribolium castaneum. Nature. 2008;452:949–55.
Article
Google Scholar
Weatherbee SD, Nijhout HF, Grunert LW, Halder G, Galant R, Selegue J, et al. Ultrabithorax function in butterfly wings and the evolution of insect wing patterns. Curr Biol. 1999;9:109–15.
Article
CAS
PubMed
Google Scholar
Abouheif E, Wray GA. Evolution of the gene network underlying wing polyphenism in ants. Science. 2002;297:249–52.
Article
CAS
PubMed
Google Scholar
Van Belleghem SM, Roelofs D, Van Houdt J, Hendrickx F. De novo transcriptome assembly and SNP discovery in the wing polymorphic salt marsh beetle Pogonus chalceus (Coleoptera, Carabidae). PLoS ONE. 2012;7:e42605.
Article
PubMed
PubMed Central
Google Scholar
Brisson JA, Ishikawa A, Miura T. Wing development genes of the pea aphid and differential gene expression between winged and unwinged morphs. Insect Mol Biol. 2010;19:63–73.
Article
CAS
PubMed
Google Scholar
McLellan ID. A revision of Zelandoperla Tillyard (Plecoptera: Gripopterygidae: Zelandoperlinae). New Zeal J Zool. 1999;26:199–219.
Article
Google Scholar
Veale AJ, Foster BJ, Dearden PK, Waters JM. Genotyping-by-sequencing supports a genetic basis for alpine wing-reduction in a New Zealand stonefly. Sci Rep. 2018;8:16275.
Article
PubMed
PubMed Central
Google Scholar
de Celis JF. Pattern formation in the Drosophila wing: the development of the veins. BioEssays. 2003;25:443–51.
Article
PubMed
Google Scholar
Klein T. Wing disc development in the fly: the early stages. Curr Opin Genet Dev. 2001;11:470–5.
Article
CAS
PubMed
Google Scholar
Bate M, Arias AM. The embryonic origin of imaginal discs in Drosophila. Development. 1991;112:755–61.
CAS
PubMed
Google Scholar
Guillén I, Mullor JL, Capdevila J, Sánchez-Herrero E, Morata G, Guerrero I. The function of engrailed and the specification of Drosophila wing pattern. Development. 1995;121:3447–56.
PubMed
Google Scholar
Tanimoto H, Itoh S, ten Dijke P, Tabata T. Hedgehog creates a gradient of DPP activity in Drosophila wing imaginal discs. Mol Cell. 2000;5:59–71.
Article
CAS
PubMed
Google Scholar
Zecca M, Basler K, Struhl G. Sequential organizing activities of engrailed, hedgehog and decapentaplegic in the Drosophila wing. Development. 1995;121:2265–78.
CAS
PubMed
Google Scholar
Cadigan KM, Fish MP, Rulifson EJ, Nusse R. Wingless repression of Drosophila frizzled 2 expression shapes the Wingless morphogen gradient in the wing. Cell. 1998;93:767–77.
Article
CAS
PubMed
Google Scholar
Couso JP, Bate M, Martinez-Arias A. A wingless-dependent polar coordinate system in Drosophila imaginal discs. Science. 1993;259:484–9.
Article
CAS
PubMed
Google Scholar
Neumann CJ, Cohen SM. Long-range action of Wingless organizes the dorsal-ventral axis of the Drosophila wing. Development. 1997;124:871–80.
CAS
PubMed
Google Scholar
Ng M, Diaz-Benjumea FJ, Vincent J-P, Wu J, Cohen SM. Specification of the wing by localized expression of wingless protein. Nature. 1996;381:316–8.
Article
CAS
PubMed
Google Scholar
Certel K, Hudson A, Carroll SB, Johnson WA. Restricted patterning of vestigial expression in Drosophila wing imaginal discs requires synergistic activation by both Mad and the drifter POU domain transcription factor. Development. 2000;127:3173–83.
CAS
PubMed
Google Scholar
Zirin JD, Mann RS. Nubbin and Teashirt mark barriers to clonal growth along the proximal–distal axis of the Drosophila wing. Dev Biol. 2007;304:745–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu J, Cohen SM. Repression of Teashirt marks the initiation of wing development. Development. 2002;129:2411–8.
CAS
PubMed
Google Scholar
Nijhout H. Insect hormones. Princeton: Princeton University Press; 1994. p. 267.
Google Scholar
Zera AJ. Juvenile Hormone and the endocrine regulation of wing polymorphism in insects: new insights from circadian and functional-genomic studies in Gryllus crickets. Physiol Entomol. 2016;41:313–26.
Article
CAS
Google Scholar
Braendle C, Davis GK, Brisson JA, Stern DL. Wing dimorphism in aphids. Heredity. 2006;97:192–9.
Article
CAS
PubMed
Google Scholar
Ishikawa A, Gotoh H, Abe T, Miura T. Juvenile hormone titer and wing-morph differentiation in the vetch aphid Megoura crassicauda. J Insect Physiol. 2013;59:444–9.
Article
CAS
PubMed
Google Scholar
McCulloch GA, Waters JM. Testing for seasonality in alpine streams: how does altitude affect freshwater insect life cycles? Freshw Biol. 2018;63:483–91.
Article
Google Scholar
Riddiford LM. Juvenile hormone-induced delay of metamorphosis of the viscera of the cecropia silkworm. Biol Bull. 1975;148:429–39.
Article
CAS
PubMed
Google Scholar
Flatt T, Kawecki TJ. Juvenile hormone as a regulator of the trade-off between reproduction and life span in Drosophila melanogaster. Evolution. 2007;61:1980–91.
Article
PubMed
Google Scholar
McCulloch GA, Waters JM. Does wing reduction influence the relationship between altitude and insect body size? A case study using New Zealand’s diverse stonefly fauna. Ecol Evol. 2018;8:953–60.
Article
PubMed
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol. 2011;29:644–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8:1494.
Article
CAS
PubMed
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
MacManes MD. On the optimal trimming of high-throughput mRNA sequence data. Front Genet. 2014;5:13.
Article
PubMed
PubMed Central
Google Scholar
Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol. 2017;35:543–8.
Article
PubMed Central
Google Scholar
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.
Article
PubMed
Google Scholar
Bryant DM, Johnson K, DiTommaso T, Tickle T, Couger MB, Payzin-Dogru D, et al. A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep. 2017;18:762–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Rattei T, Mende DR, Sunagawa S, Kuhn M, Jensen LJ. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2015;20:D286–93.
Google Scholar
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.
Article
CAS
PubMed
Google Scholar
Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davidson NM, Oshlack A. Corset: enabling differential gene expression analysis for de novo assembled transcriptomes. Genome Biol. 2014;15:410.
PubMed
PubMed Central
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
Article
CAS
PubMed
Google Scholar
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8.
CAS
Google Scholar