Campbell G, Weaver T, Tomlinson A. Axis specification in the developing Drosophila appendage: the role of wingless, decapentaplegic, and the homeobox gene aristaless. Cell. 1993;74:1113–23.
Article
CAS
PubMed
Google Scholar
Cohen B, Simcox AA, Cohen SM. Allocation of the thoracic imaginal primordia in the Drosophila embryo. Development. 1993;117:597–608.
CAS
PubMed
Google Scholar
Abzhanov A, Kaufman TC. Homologs of Drosophila appendage genes in the patterning of arthropod limbs. Dev Biol. 2000;227:683–9.
Article
CAS
Google Scholar
Prpic NM, Janssen R, Wigand B, Klingler M, Damen WG. Gene expression in spider appendages reveals reversal of exd/hth spatial specificity, altered leg gap gene dynamics, and suggests divergent distal morphogen signaling. Dev Biol. 2003;264:119–40.
Article
CAS
PubMed
Google Scholar
Brook WJ. T-box genes organize the dorsal ventral leg axis in Drosophila melanogaster. Fly (Austin). 2010;4:159–62.
Article
CAS
Google Scholar
Damen WGM (2002) Parasegmental organization of the spider embryo implies that the parasegment is an evolutionary conserved entity in arthropod embryogenesis. Development 129:1239-50
CAS
PubMed
Google Scholar
Janssen R, Prpic NM, Damen WG. Gene expression suggests decoupled dorsal and ventral segmentation in the millipede Glomeris marginata (Myriapoda: Diplopoda). Dev Biol. 2004;268:89–104.
Article
CAS
PubMed
Google Scholar
Ober KA, Jockusch EL. The roles of wingless and decapentaplegic in axis and appendage development in the red flour beetle, Tribolium castaneum. Dev Biol. 2006;294:391–405.
Article
CAS
PubMed
Google Scholar
Grossmann D, Scholten J, Prpic NM. Separable functions of wingless in distal and ventral patterning of the Tribolium leg. Dev Genes Evol. 2009;219:469–79.
Article
PubMed
PubMed Central
Google Scholar
Eriksson BJ, Tait NN, Budd GE, Akam M. The involvement of engrailed and wingless during segmentation in the onychophoran Euperipatoides kanangrensis (Peripatopsidae: Onychophora) (Reid 1996). Dev Genes Evol. 2009;219:249–64.
Article
PubMed
Google Scholar
Diaz-Benjumea FJ, Cohen B, Cohen SM. Cell interaction between compartments establishes the proximal-distal axis of Drosophila legs. Nature. 1994;372:175–9.
Article
CAS
PubMed
Google Scholar
Abu-Shaar M, Mann RS. Generation of multiple antagonistic domains along the proximodistal axis during Drosophila leg development. Development. 1998;125:3821–30.
CAS
PubMed
Google Scholar
Estella C, Mann RS. Logic of Wg and Dpp induction of distal and medial fates in the Drosophila leg. Development. 2008;135:627–36.
Article
CAS
PubMed
Google Scholar
Prpic NM, Wigand B, Damen WG, Klingler M. Expression of dachshund in wild-type and Distal-less mutant Tribolium corroborates serial homologies in insect appendages. Dev Genes Evol. 2001;211:467–77.
Article
CAS
PubMed
Google Scholar
Inoue Y, Mito T, Miyawaki K, Matsushima K, Shinmyo Y, Heanue TA, Mardon G, Ohuchi H, Noji S. Correlation of expression patterns of homothorax, dachshund, and Distal-less with the proximodistal segmentation of the cricket leg bud. Mech Dev. 2002;113:141–8.
Article
CAS
PubMed
Google Scholar
Angelini DR, Kaufman TC. Functional analyses in the hemipteran Oncopeltus fasciatus reveal conserved and derived aspects of appendage patterning in insects. Dev Biol. 2004;271:306–21.
Article
CAS
PubMed
Google Scholar
Janssen R, Eriksson BJ, Budd GE, Akam M, Prpic NM. Gene expression patterns in an onychophoran reveal that regionalization predates limb segmentation in pan-arthropods. Evol Dev. 2010;12:363–72.
Article
CAS
PubMed
Google Scholar
Sharma PP, Schwager EE, Extavour CG, Giribet G. Evolution of the chelicera: a dachshund domain is retained in the deutocerebral appendage of Opiliones (Arthropoda, Chelicerata). Evol Dev. 2012;14:522–33.
Article
PubMed
Google Scholar
Schaeper ND, Wimmer EA, Prpic NM. Appendage patterning in the primitively wingless hexapods Thermobia domestica (Zygentoma: Lepismatidae) and Folsomia candida (Collembola: Isotomidae). Dev Genes Evol. 2013;223:341–50.
Article
PubMed
Google Scholar
Struhl G, Basler K. Organizing activity of wingless protein in Drosophila. Cell. 1993;72:527–40.
Article
CAS
PubMed
Google Scholar
Brook WJ, Cohen SM. Antagonistic interactions between wingless and decapentaplegic responsible for dorsal–ventral pattern in the Drosophila leg. Science. 1996;273:1373–7.
Article
CAS
PubMed
Google Scholar
Morimura S, Maves L, Chen Y, Hoffmann FM. Decapentaplegic overexpression affects Drosophila wing and leg imaginal disc development and wingless expression. Dev Biol. 1996;177:136–51.
Article
CAS
PubMed
Google Scholar
Couso JP, Bate M, Martinez-Arias A. A wingless-dependent polar coordinate system in Drosophila imaginal discs. Science. 1993;259:484–9.
Article
CAS
PubMed
Google Scholar
Wilder EL, Perrimon N. Dual functions of wingless in the Drosophila leg imaginal disc. Development. 1995;121:477–88.
CAS
PubMed
Google Scholar
Prpic NM, Janssen R, Damen WG, Tautz D. Evolution of dorsal-ventral axis formation in arthropod appendages: H15 and optomotor-blind/bifid-type T-box genes in the millipede Glomeris marginata (Myriapoda: Diplopoda). Evol Dev. 2005;7:51–7.
Article
CAS
PubMed
Google Scholar
Svendsen PC, Formaz-Preston A, Leal SM, Brook WJ. The Tbx20 homologs midline and H15 specify ventral fate in the Drosophila melanogaster leg. Development. 2009;136:2689–93.
Article
CAS
PubMed
Google Scholar
Pflugfelder GO, Eichinger F, Shen J. T-box genes in Drosophila limb development. Curr Top Dev Biol. 2017;122:313–54.
Article
CAS
PubMed
Google Scholar
Held LI, Heup MA, Sappington JM, Peters SD. Interactions of decapentaplegic, wingless, and Distal-less in the Drosophila leg. Roux Arch Dev Biol. 1994;203:310–9.
Article
PubMed
Google Scholar
Maves L, Schubiger G. A molecular basis for transdetermination in Drosophila imaginal discs: interactions between wingless and decapentaplegic signaling. Development. 1998;125:115–24.
CAS
PubMed
Google Scholar
Giorgianni MW, Patel NH. Patterning of the branched head appendages in Schistocerca americana and Tribolium castaneum. Evol Dev. 2004;6:402–10.
Article
PubMed
Google Scholar
Janssen R, Feitosa NM, Damen WG, Prpic NM. The T-box genes H15 and optomotor-blind in the spiders Cupiennius salei, Tegenaria atrica and Achaearanea tepidariorum and the dorsoventral axis of arthropod appendages. Evol Dev. 2008;10:143–54.
Article
CAS
PubMed
Google Scholar
Janssen R, Jörgensen M, Prpic NM, Budd GE. Aspects of dorso-ventral an proximo-distal limb patterning in onychophorans. Evol Dev. 2015;17:21–33.
Article
CAS
PubMed
Google Scholar
Angelini DR, Kaufman TC. Functional analyses in the milkweed bug Oncopeltus fasciatus (Hemiptera) support a role for Wnt signaling in body segmentation but not appendage development. Dev Biol. 2005;283:409–23.
Article
CAS
PubMed
Google Scholar
Nakamura T, Mito T, Tanaka Y, Bando T, Ohuchi H, Noji S. Involvement of canonical Wnt/Wingless signaling in the determination of the positional values within the leg segment of the cricket Gryllus bimaculatus. Dev Growth Differ. 2007;49:79–88.
Article
CAS
PubMed
Google Scholar
Janssen R, Le Gouar M, Pechmann M, Poulin F, Bolognesi R, Schwager EE, Hopfen C, Colbourne JK, Budd GE, Brown SJ, Prpic NM, Kosiol C, Vervoort M, Damen WG, Balavoine G, McGregor AP. Conservation, loss, and redeployment of Wnt ligands in protostomes: implications for understanding the evolution of segment formation. BMC Evol Biol. 2010;10:374.
Article
CAS
PubMed
PubMed Central
Google Scholar
Franke FA, Mayer G. Controversies surrounding segments and parasegments in Onychophora: insights from the expression patterns of four “segment polarity genes” in the peripatopsid Euperipatoides rowelli. PLoS ONE. 2014;9:e114383.
Article
PubMed
PubMed Central
CAS
Google Scholar
Murat S, Hopfen C, McGregor AP. The function and evolution of Wnt genes in arthropods. Arthropod Struct Dev. 2010;39:446–52.
Article
CAS
PubMed
Google Scholar
Bolognesi R, Beermann A, Farzana L, Wittkopp N, Lutz R, Balavoine G, Brown SJ, Schröder R. Tribolium Wnts: evidence for a larger repertoire in insects with overlapping expression patterns that suggest multiple redundant functions in embryogenesis. Dev Genes Evol. 2008;218:193–202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mazet F, Yu JK, Liberles DA, Holland LZ, Shimeld SM. Phylogenetic relationships of the Fox (Forkhead) gene family in the Bilateria. Gene. 2003;316:79–89.
Article
CAS
PubMed
Google Scholar
Lee HH, Frasch M (2004) Survey of forkhead domain encoding genes in the Drosophila genome: Classification and embryonic expression patterns. Dev Dyn 229:357–66.
Article
CAS
PubMed
Google Scholar
Hogvall M, Schönauer A, Budd GE, McGregor AP, Posnien N, Janssen R. Analysis of the Wnt gene repertoire in an onychophoran provides new insights into the evolution of segmentation. Evodevo. 2014;5:14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Janssen R, Budd GE. Deciphering the onychophoran ‘segmentation gene cascade’: gene expression reveals limited involvement of pair rule gene orthologs in segmentation, but a highly conserved segment polarity gene network. Dev Biol. 2013;382:224–34.
Article
CAS
PubMed
Google Scholar
Mittmann B, Wolff C. Embryonic development and staging of the cobweb spider Parasteatoda tepidariorum C. L. Koch, 1841 (syn.: Achaearanea tepidariorum; Araneomorphae; Theridiidae). Dev Genes Evol. 2012;222:189–216.
Article
PubMed
Google Scholar
Strobl F, Stelzer EH. Non-invasive long-term fluorescence live imaging of Tribolium castaneum embryos. Development. 2014;141:2331–8.
Article
CAS
PubMed
Google Scholar
Tribolium Genome Sequencing Consortium, Richards S, Gibbs RA, Weinstock GM, et al. The genome of the model beetle and pest Tribolium castaneum. Nature. 2008;452:949–55.
Article
CAS
Google Scholar
Schwager EE, Sharma PP, Clarke T, et al. The house spider genome reveals an ancient whole-genome duplication during arachnid evolution. BMC Biol. 2017;15:62.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schinko J, Posnien N, Kittelmann S, Koniszewski N, Bucher G. Single and double whole-mount in situ hybridization in red flour beetle (Tribolium) embryos. Cold Spring Harb Protoc. 2009;8:pdb.prot5258.
Google Scholar
Pechmann M, Benton MA, Kenny NJ, Posnien N, Roth S. A novel role for Ets4 in axis specification and cell migration in the spider Parasteatoda tepidariorum. Elife. 2017;6:e27590.
Article
PubMed
PubMed Central
Google Scholar
Janssen R, Andersson E, Betner E, Bijl S, Fowler W, Höök L, Lehr J, Mannelqvist A, Panara V, Smith K, Tieman S. Embryonic expression patterns and phylogenetic analysis of panarthropod Sox genes: insight into nervous system development, segmentation and gonadogenesis. BMC Evol Biol. 2018;18:88.
Article
PubMed
PubMed Central
CAS
Google Scholar
Janssen R, Budd GE, Damen WG, Prpic NM. Evidence for Wg-independent tergite boundary formation in the millipede Glomeris marginata. Dev Genes Evol. 2008;218:361–70.
Article
CAS
PubMed
Google Scholar
Huelsenbeck JP, Ronquist F. MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:754–5.
Article
CAS
PubMed
Google Scholar
Häcker U, Grossniklaus U, Gehring WJ, Jäckle H. Developmentally regulated Drosophila gene family encoding the fork head domain. Proc Natl Acad Sci USA. 1992;89:8754–8.
Article
PubMed
PubMed Central
Google Scholar
Kimm MA, Prpic NM. Formation of the arthropod labrum by fusion of paired and rotated limb-bud-like primordial. Zoomorphology. 2006;125:147–55.
Article
Google Scholar
McGregor AP, Pechmann M, Schwager EE, Feitosa NM, Kruck S, Aranda M, Damen WG. Wnt8 is required for growth-zone establishment and development of opisthosomal segments in a spider. Curr Biol. 2008;18:1619–23.
Article
CAS
PubMed
Google Scholar
Königsmann T, Turetzek N, Pechmann M, Prpic NM. Expression and function of the zinc finger transcription factor Sp6-9 in the spider Parasteatoda tepidariorum. Dev Genes Evol. 2017;227:389–400.
Article
PubMed
CAS
Google Scholar
Prpic NM, Damen WG. Notch-mediated segmentation of the appendages is a molecular phylotypic trait of the arthropods. Dev Biol. 2009;326:262–71.
Article
CAS
PubMed
Google Scholar
Zhang N. Developmental studies of appendage patterning and formation in spiders. Ph.D. Thesis. Georg-August-Universiät Göttingen, Göttingen, Germany. 2016. http://hdl.handle.net/11858/00-1735-0000-002B-7CB4-D.
Eriksson BJ, Budd GE. Onychophoran cephalic nerves and their bearing on our understanding of head segmentation and stem-group evolution of Arthropoda. Arthropod Struct Dev. 2000;29:197–209.
Article
CAS
PubMed
Google Scholar
Eriksson BJ, Tait NN, Budd GE, Janssen R, Akam M. Head patterning and Hox gene expression in an onychophoran and its implications for the arthropod head problem. Dev Genes Evol. 2010;220:117–22.
Article
PubMed
Google Scholar
Jockusch EL. Developmental and evolutionary perspectives on the origin and diversification of arthropod appendages. Integr Comp Biol. 2017;57:533–45.
Article
CAS
PubMed
Google Scholar
Beermann A, Prühs R, Lutz R, Schröder R (2011) A context-dependent combination of Wnt receptors controls axis elongation and leg development in a short germ insect. Development 138:2793-2805.
Article
CAS
PubMed
PubMed Central
Google Scholar
Janssen R, Schönauer A, Weber M, Turetzek N, Hogvall M, Goss GE, Patel NH, McGregor AP, Hilbrant M. The evolution and expression of panarthropod frizzled genes. Front Ecol Evol. 2015;3:96.
Article
Google Scholar
Grimm S, Pflugfelder GO. Control of the gene optomotor-blind in Drosophila wing development by decapentaplegic and wingless. Science. 1996;271:1601–4.
Article
CAS
PubMed
Google Scholar
Kojima T. The mechanism of Drosophila leg development along the proximodistal axis. Dev Growth Differ. 2004;46:115–29.
Article
CAS
PubMed
Google Scholar
Kubota K, Goto S, Hayashi S. The role of Wg signaling in the patterning of embryonic leg primordium in Drosophila. Dev Biol. 2003;257:117–26.
Article
CAS
PubMed
Google Scholar
González-Crespo S, Morata G. Genetic evidence for the subdivision of the arthropod limb into coxopodite and telopodite. Development. 1996;122:3921–8.
PubMed
Google Scholar
Casares F, Mann RS. The ground state of the ventral appendage in Drosophila. Science. 2001;293:1477–80.
Article
CAS
PubMed
Google Scholar
Mardon G, Solomon N, Rubin GM. dachshund encodes a nuclear protein required for normal eye and leg development in Drosophila. Development. 1994;120:3473–86.
CAS
PubMed
Google Scholar
Lecuit T, Cohen SM. Proximal-distal axis formation in the Drosophila leg. Nature. 1997;388:139–45.
Article
CAS
PubMed
Google Scholar
Rauskolb C. The establishment of segmentation in the Drosophila leg. Development. 2001;128:4511–21.
CAS
PubMed
Google Scholar
Parody TR, Muskavitch MAT. The pleiotropic function of Delta during postembryonic development of Drosophila melanogaster. Genetics. 1993;135:527–39.
CAS
PubMed
PubMed Central
Google Scholar
Speicher SA, Thomas U, Hinz U, Knust E. The Serrate locus of Drosophila and its role in morphogenesis of the wing imaginal discs: control of cell proliferation. Development. 1994;120:535–44.
CAS
PubMed
Google Scholar
de Celis JF, Tyler DM, de Celis J, Bray SJ. Notch signaling mediates segmentation of the Drosophila leg. Development. 1998;125:4617–26.
PubMed
Google Scholar
Rauskolb C, Irvine KD. Notch-mediated segmentation and growth control of the Drosophila leg. Dev Biol. 1999;210:339–50.
Article
CAS
PubMed
Google Scholar
Hao I, Green RB, Dunaevsky O, Lengyel JA, Rauskolb C. The odd-skipped family of zinc finger genes promotes Drosophila leg segmentation. Dev Biol. 2003;263:282–95.
Article
CAS
PubMed
Google Scholar
Angelini DR, Smith FW, Jockusch EL (2012) Extent With Modification: Leg Patterning in the Beetle Tribolium castaneum and the Evolution of Serial Homologs. G3 (Bethesda) 2:235–48
Article
Google Scholar