Umen JG, Olson BJSC. Genomics of Volvocine Algae. Piganeau G, editor. Adv Bot Res. 2012;64:185–243.
Matt G, Umen JG. Volvox: a simple algal model for embryogenesis, morphogenesis and cellular differentiation. Develop Biol. 2016;419:99–113.
CAS
PubMed
Google Scholar
Kirk DL. Volvox. Bard JBL, Barlow P W, Green P B, Kirk DL, editors. Cambridge University Press; 1998.
Smith GM. A Comparative Study of the Species of Volvox. T Am Microsc Soc. 1944;63:265.
Google Scholar
Herron MD, Michod RE. Evolution of complexity in the volvocine algae: transitions in individuality through Darwin’s eye. Evolution. 2008;62:436–51.
PubMed
Google Scholar
Herron MD, Hackett JD, Aylward FO, Michod RE. Triassic origin and early radiation of multicellular volvocine algae. Proc Natl Acad Sci USA. 2009;106:3254–8.
CAS
PubMed
Google Scholar
Butterfield NJ, Knoll AH, Swett K. Paleobiology of the Neoproterozoic Svanbergfjellet Formation. Spitsbergen Lethaia. 1994;27:76–76.
Google Scholar
Herron MD. Origins of multicellular complexity: volvox and the volvocine algae. Mol Ecol. 2016;25:1213–23.
PubMed
PubMed Central
Google Scholar
Kirk D, Kirk M. Heat shock elicits production of sexual inducer in Volvox. Science. 1986;231:51–4.
CAS
PubMed
Google Scholar
Umen J, Coelho S. Algal sex determination and the evolution of anisogamy. Annu Rev Microbiol. 2019;73:1–25.
Google Scholar
Hamaji T, Kawai-Toyooka H, Uchimura H, Suzuki M, Noguchi H, Minakuchi Y, et al. Anisogamy evolved with a reduced sex-determining region in volvocine green algae. Commun Biol. 2018;1:17.
PubMed
PubMed Central
Google Scholar
Ferris P, Olson BJSC, Hoff PLD, Douglass S, Casero D, Prochnik S, et al. Evolution of an expanded sex-determining locus in Volvox. Science. 2010;328:351–4.
CAS
PubMed
PubMed Central
Google Scholar
Starr RC. Meiosis in Volvox carteri f. nagariensis. Archiv fur Protistenkunde. 1975;117:187–91.
Google Scholar
Starr RC. Structure, reproduction and differentiation in Volvox carteri f nagariensis Iyengar, strains HK9 & 10. Arch Protistenkd. 1969;111:204–22.
Google Scholar
Seining for algae in Lake Biwa [Internet]. n.d. https://youtu.be/aC9O__GuYq4.
Meredith RF, Starr RC. The Genetic Basis of Male Potency in Volvox carteri f. nagariensis (Chlorophyceae). J Phycol. 1975;11:265–72.
Google Scholar
Nozaki H, Ueki N, Takusagawa M, Yamashita S, Misumi O, Matsuzaki R, et al. Morphology, taxonomy and mating-type loci in natural populations of Volvox carteri in Taiwan. Botanical Studies. 2018;59:10.
PubMed
PubMed Central
Google Scholar
Kawafune K, Hongoh Y, Hamaji T, Sakamoto T, Kurata T, Hirooka S, et al. Two different rickettsial bacteria invading Volvox carteri. PLoS ONE. 2015;10:e0116192.
PubMed
PubMed Central
Google Scholar
Kirk DL, Kirk MM. Protein synthetic patterns during the asexual life cycle of Volvox carteri. Dev Biol [Internet]. 1983. 96:493–506. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=6832480&retmode=ref&cmd=prlinks.
Nakazawa A, Nishii I. Amidic and acetonic cryoprotectants improve cryopreservation of volvocine green algae. Cryo Lett. 2012;33:201–12.
Google Scholar
Kirk DL. A twelve-step program for evolving multicellularity and a division of labor. BioEssays. 2005;27:299–310.
PubMed
Google Scholar
Umen JG. Green Algae and the Origins of Multicellularity in the Plant Kingdom. Cold Spring Harbor Perspectives Biol. 2014;6:1–27.
Google Scholar
Arakaki Y, Kawai-Toyooka H, Hamamura Y, Higashiyama T, Noga A, Hirono M, et al. The simplest integrated multicellular organism unveiled. PloS ONE. 2013;8:e81641.
PubMed
PubMed Central
Google Scholar
Hanschen ER, Herron MD, Wiens JJ, Nozaki H, Michod RE. Multicellularity drives the evolution of sexual traits. Am Nat. 2018;192:E93–105.
PubMed
PubMed Central
Google Scholar
Grochau-Wright ZI, Hanschen ER, Ferris PJ, Hamaji T, Nozaki H, Olson BJSC, et al. Genetic basis for soma is present in undifferentiated volvocine green algae. J Evolu Biol. 2017;30:1205–18.
CAS
Google Scholar
Duncan L, Nishii I, Howard A, Kirk D, Miller SM. Orthologs and paralogs of regA, a master cell-type regulatory gene in Volvox carteri. Curr Genet. 2006;50:61–72.
CAS
PubMed
Google Scholar
Duncan L, Nishii I, Harryman A, Buckley S, Howard A, Friedman NR, et al. The VARL Gene family and the evolutionary origins of the master cell-type regulatory gene, regA, in Volvox carteri. J Mol Evol. 2007;65:1–11.
CAS
PubMed
Google Scholar
Kirk MM, Ransick A, McRae SE, Kirk DL. The relationship between cell size and cell fate in Volvox carteri. The Journal of Cell Biology [Internet]. 1993. 123:191–208. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=8408198&retmode=ref&cmd=prlinks.
Matt GY, Umen JG. Cell-type transcriptomes of the multicellular green alga Volvox carteri yield insights into the evolutionary origins of germ and somatic differentiation programs. G3. 2018;8:531–50.
CAS
PubMed
Google Scholar
Klein B, Wibberg D, Hallmann A. Whole transcriptome RNA-Seq analysis reveals extensive cell type-specific compartmentalization in Volvox carteri. BMC Biol. 2017;15:111.
PubMed
PubMed Central
Google Scholar
Dueck A, Evers M, Henz SR, Unger K, Eichner N, Merkl R, et al. Gene silencing pathways found in the green alga Volvox carteri reveal insights into evolution and origins of small RNA systems in plants. BMC Genomics. 2016. https://doi.org/10.1186/s12864-016-3202-4.
Article
PubMed
PubMed Central
Google Scholar
Cheng Q, Pappas V, Hallmann A, Miller SM. Hsp70A and GlsA interact as partner chaperones to regulate asymmetric division in Volvox. Develop Biol. 2005;286:537–48.
CAS
PubMed
Google Scholar
Haas PA, Goldstein RE. Embryonic inversion in Volvox carteri: the flipping and peeling of elastic lips. Phys Rev E. 2018;98:052415.
PubMed
PubMed Central
Google Scholar
Hoops HJ, Nishii I, Kirk DL. Cytoplasmic Bridges in Volvox and Its Relatives. 2006. p. 65–84.
Kirk DL, Nishii I. Volvox carteri as a model for studying the genetic and cytological control of morphogenesis. Dev Growth Differ. 2001;43:621–31.
CAS
PubMed
Google Scholar
Green KJ, Viamontes GI, Kirk DL. Mechanism of formation, ultrastructure, and function of the cytoplasmic bridge system during morphogenesis in Volvox. J Cell Biology [Internet]. 1981. 91:756–69. http://jcb.rupress.org/content/91/3/756.long.
Viamontes GI, Kirk DL. Cell shape changes and the mechanism of inversion in Volvox. Journal Cell Biol. 1977;75:719–30.
CAS
Google Scholar
Geng S, Miyagi A, Umen JG. Evolutionary divergence of the sex-determining gene MID uncoupled from the transition to anisogamy in volvocine algae. Development. 2018. https://doi.org/10.1242/dev.162537.
Article
PubMed
PubMed Central
Google Scholar
Geng S, Hoff PD, Umen JG. Evolution of sexes from an ancestral mating-type specification pathway. PLoS Biol. 2014;12:e1001904.
PubMed
PubMed Central
Google Scholar
Coelho SM, Gueno J, Lipinska AP, Cock JM, Umen JG. UV chromosomes and haploid sexual systems. Trends Plant Sci. 2018;23:794–807.
CAS
PubMed
PubMed Central
Google Scholar
Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science [Internet]. 2007. 318:245–50. http://www.sciencemag.org/cgi/content/full/318/5848/245/DC1.
Prochnik SE, Umen J, Nedelcu AM, Hallmann A, Miller SM, Nishii I, et al. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science. 2010;329:223–6.
CAS
PubMed
PubMed Central
Google Scholar
Hanschen ER, Marriage TN, Ferris PJ, Hamaji T, Toyoda A, Fujiyama A, et al. The Gonium pectorale genome demonstrates co-option of cell cycle regulation during the evolution of multicellularity. Nat Commun. 2016;7:11370.
CAS
PubMed
PubMed Central
Google Scholar
Featherston J, Arakaki Y, Hanschen ER, Ferris PJ, Michod RE, Olson BJSC, et al. The 4-celled Tetrabaena socialis nuclear genome reveals the essential components for genetic control of cell number at the origin of multicellularity in the volvocine lineage. Mol Biol Evol. 2017;35(4):855–70.
Google Scholar
Li J, Wu Y, Qi Y. MicroRNAs in a multicellular green alga Volvox carteri. Sci China Life Sci. 2014;57:36–45.
PubMed
Google Scholar
Zhao T, Li G, Mi S, Li S, Hannon GJ, Wang X-J, et al. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Develop. 2007;21(10):1190–203.
CAS
PubMed
Google Scholar
Molnár A, Schwach F, Studholme DJ, Thuenemann EC, Baulcombe DC. miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature. 2007;447(7148):1126–9.
PubMed
Google Scholar
Ueki N, Matsunaga S, Inouye I, Hallmann A. How 5000 independent rowers coordinate their strokes in order to row into the sunlight: phototaxis in the multicellular green alga Volvox. BMC Biology [Internet]. 2010;8:1–21. http://www.biomedcentral.com/1741-7007/8/103.
Goldstein RE. Green algae as model organisms for biological fluid dynamics. Annual Rev Fluid Mech. 2015;47:343–75.
Google Scholar
Hoops HJ. Motility in the colonial and multicellular Volvocales: structure, function, and evolution. Protoplasma. 1997;199:99–112.
Google Scholar
Hoops H. Flagellar, cellular and organismal polarity in Volvox carteri. Journal of Cell Science [Internet]. 1993. 104:105–17. http://jcs.biologists.org/cgi/content/abstract/104/1/105.
Hoops HJ. Somatic cell flagellar apparatuses in two species of Volvox (Chlorophyceae). J Phycol. 1984;20:20–7.
Google Scholar
Drescher K, Goldstein RE, Tuval I. Fidelity of adaptive phototaxis. Proc National Acad Sci. 2010;107:11171–6.
CAS
Google Scholar
Ueki N, Wakabayashi K-I. Detergent-extracted Volvox model exhibits an anterior-posterior gradient in flagellar Ca2 + sensitivity. Proc Natl Acad Sci U S A. 2018;115:E1061–8.
CAS
PubMed
PubMed Central
Google Scholar
Hegemann P. Vision in microalgae. Planta. 1997;203:265–74.
CAS
PubMed
Google Scholar
Ueki N, Nishii I. Controlled enlargement of the glycoprotein vesicle surrounding a volvox embryo requires the InvB nucleotide-sugar transporter and is required for normal morphogenesis. The Plant Cell [Internet]. 2009;21:1166–81. http://www.plantcell.org/cgi/content/full/21/4/1166.
Höhn S, Honerkamp-Smith AR, Haas PA, Trong PK, Goldstein RE. Dynamics of a Volvox embryo turning itself inside out. Physical Rev Lett. 2015;114:178101–5.
Google Scholar
Sessoms AH, Huskey RJ. Genetic control of development in Volvox: isolation and characterization of morphogenetic mutants. Proc Natl Acad Sci U S A. 1973;70:1335–8.
CAS
PubMed
PubMed Central
Google Scholar
Huskey RJ. Mutants affecting vegetative cell orientation in Volvox carteri. Develop Biol. 1979;72:236–43.
CAS
PubMed
Google Scholar
Huskey RJ, Griffin BE, Cecil PO, Callahan AM. A Preliminary Genetic Investigation of Volvox carteri. Genetics [Internet]. 1979. 91:229–44. http://www.genetics.org/cgi/reprint/91/2/229.
Pall ML. Mutants of Volvox showing premature cessation of division: evidence for a relationship between cell size and reproductive cell differentiation. In: McMahon D, Fox CF, editors. 1975. p. 148–56.
Callahan AM, Huskey RJ. Genetic control of sexual development in Volvox. Develo Biol. 1980;80:419–35.
CAS
Google Scholar
Kirk MM, Stark K, Miller SM, Müller W, Taillon BE, Gruber H, et al. regA, a Volvox gene that plays a central role in germ-soma differentiation, encodes a novel regulatory protein. Development [Internet]. 1999;126:639–47. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=9895312&retmode=ref&cmd=prlinks.
Miller SM, Kirk DL. glsA, a Volvox gene required for asymmetric division and germ cell specification, encodes a chaperone-like protein. Development. 1999;126:649–58.
CAS
PubMed
Google Scholar
Ueki N, Nishii I. Idaten is a new cold-inducible transposon of Volvox carteri that can be used for tagging developmentally important genes. Genetics [Internet]. 2008. 180:1343–53. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=18791222&retmode=ref&cmd=prlinks.
Adams CR, Stamer KA, Miller JK, McNally JG, Kirk MM, Kirk DL. Patterns of organellar and nuclear inheritance among progeny of two geographically isolated strains of Volvox carteri. Current Genetics [Internet]. 1990. 18:141–53. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=1977526&retmode=ref&cmd=prlinks.
Ortega-Escalante JA, Kwok O, Miller SM. New Selectable Markers for Volvox carteri transformation. Protist. 2018;170:52–63.
PubMed
Google Scholar
Jakobiak T, Mages W, Scharf B, Babinger P, Stark K, Schmitt R. The bacterial paromomycin resistance gene, aphH, as a dominant selectable marker in Volvox carteri. Protist. 2004;155:381–93.
CAS
PubMed
Google Scholar
Gruber H, Kirzinger SH, Schmitt R. Expression of the Volvox gene encoding nitrate reductase: Mutation-dependent activation of cryptic splice sites and intron-enhanced gene expression from a cDNA. Plant Mol Biol [Internet]. 2007. 31:1–12. http://www.springerlink.com/index/U442X2215K077851.pdf.
Schiedlmeier B, Schmitt R, Muller W, Kirk MM, Gruber H, Mages W, et al. Nuclear transformation of Volvox carteri. Proc National Acad Sci [Internet]. 1994. 91:5080–4. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=8197189&retmode=ref&cmd=prlinks.
Hallmann A, Rappel A. Genetic engineering of the multicellular green alga Volvox: a modified and multiplied bacterial antibiotic resistance gene as a dominant selectable marker. Plant J. 1999;17:99–109.
CAS
PubMed
Google Scholar
Babinger P, Kobl I, Mages W, Schmitt R. A link between DNA methylation and epigenetic silencing in transgenic Volvox carteri. Nucleic Acids Research [Internet]. 2001;29:1261–71. http://nar.oxfordjournals.org/cgi/content/abstract/29/6/1261.
Hallmann A, Sumper M. Reporter genes and highly regulated promoters as tools for transformation experiments in Volvox carteri. Proc National Acad Sci. 1994;91:11562–6.
CAS
Google Scholar
von der Heyde EL. The inducible nitA promoter provides a powerful molecular switch for transgene expression in Volvox carteri. BMC Biotechnol. 2015;15:1–13.
Google Scholar
Cheng Q, Hallmann A, Edwards L, Miller SM. Characterization of a heat-shock-inducible hsp70 gene of the green alga Volvox carteri. Gene. 2006;371:112–20.
CAS
PubMed
Google Scholar
Ebnet E, Fischer M, Deininger W, Hegemann P. Volvoxrhodopsin, a light-regulated sensory photoreceptor of the spheroidal green Alga Volvox carteri. Plant Cell. 1999;11:1473–84.
CAS
PubMed
PubMed Central
Google Scholar
Ortega-Escalante JA, Jasper R, Miller SM. CRISPR/Cas9 mutagenesis in Volvox carteri. Plant J. 2019;97:661–72.
CAS
PubMed
Google Scholar
Lerche K, Hallmann A. Stable nuclear transformation of Eudorina elegans. BMC biotechnology [Internet]. 2013. 13:11. http://www.biomedcentral.com/1472-6750/13/11/abstract.
Lerche K, Hallmann A. Stable nuclear transformation of Gonium pectorale. BMC Biotechnol. 2009;9:64.
PubMed
PubMed Central
Google Scholar
Lerche K, Hallmann A. Stable nuclear transformation of Pandorina morum. BMC biotechnology. 2014;14:65.
PubMed
PubMed Central
Google Scholar
Grochau-Wright Z. The Origin and Evolution of the REG Cluster in the Volvocine Green Algae: A Model System for the Evolution of Cellular Differentiation. 2019.
th International Volvox Conference [Internet]. www.bs.s.u-tokyo.ac.jp/~tayousei/Volvox2019/index.html.
19th International Conference on the Cell and Molecular Biology of Chlamydomonas [Internet]. n.d. https://chlamy2020.sciencesconf.org/.
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 2012;40:D1178–86.
CAS
PubMed
Google Scholar
Phytozome [Internet]. https://phytozome.jgi.doe.gov.
PhycoCosm [Internet]. https://phycocosm.jgi.doe.gov.
UTEX Culture Collection of Algae [Internet]. https://utex.org.
Microbial Culture Collection at the National Institute for Environmental Studies [Internet]. https://mcc.nies.go.jp.
The Culture Collection of Algae at Goettingen University [Internet]. https://www.uni-goettingen.de/en/45175.html.
Picket-Heaps J. The Volvocales and Chlorococcales [Internet]. https://www.kanopy.com/product/remarkable-plants-volvocales-and-chlorococ.
Miller SM. Volvox, Chlamydomonas, and the evolution of multicellularity. Nat Edu. 2010;3:65.
Google Scholar
Russell JJ, Theriot JA, Sood P, Marshall WF, Landweber LF, Fritz-Laylin L, et al. Non-model model organisms. BMC Biol. 2017;15:55.
PubMed
PubMed Central
Google Scholar