Magallón S, Sánchez-Reyes LL, Gómez-Acevedo SL. Thirty clues to the exceptional diversification of flowering plants. Ann Bot. 2018;123(3):491–503.
PubMed Central
Google Scholar
Jersáková J, Johnson SD, Kindlmann P. Mechanisms and evolution of deceptive pollination in orchids. Biol Rev Camb Philos Soc. 2006;81(2):219–35.
PubMed
Google Scholar
Der Pijl V, Ev- S. The evolution of Beetle pollination in a South African orchid. Am J Bot. 1998;85(9):1180–93.
Google Scholar
Berlin FU, Ag B, Str K. Colour similarity to rewarding model plants affects pollination in a food deceptive orchid. Biol J Lin Soc. 2001;72(3):419–33.
Google Scholar
Galizia CG, Kunze J, Gumbert A, Borg-karlson A, Sachse S, Markl C, et al. Relationship of visual and olfactory signal parameters in a food-deceptive flower mimicry system. Behav Ecol. 2005;16(1):159–68.
Google Scholar
Dafni A, Ivri Y. Floral mimicry between Orchis israelitica Baumann and Dafni (Orchidaceae) and Bellevalia flexuosa Boiss (Liliaceae). Oecologia. 1981;49(2):229–32. https://doi.org/10.1007/BF00349193.
Article
CAS
PubMed
Google Scholar
Johnson SD. Evidence for Batesian mimicry in a butterfly-pollinated orchid. Biol J Linn Soc. 1994;53(1):91–104.
Google Scholar
Johnson SD, Alexandersson R, Linder HP. Experimental and phylogenetic evidence for floral mimicry in a guild of fly-pollinated plants. Biol J Linn Soc. 2003;80(2):289–304.
Google Scholar
Urru I, Stensmyr MC, Hansson BS. Pollination by brood-site deception. Phytochemistry. 2011;72(13):1655–66. https://doi.org/10.1016/j.phytochem.2011.02.014.
Article
CAS
PubMed
Google Scholar
Vereecken NJ, Dorchin A, Dafni A, Hötling S, Schulz S, Watts S. A pollinators’ eye view of a shelter mimicry system. Ann Bot. 2013;111(6):1155–65.
CAS
PubMed
PubMed Central
Google Scholar
Dafni A, Ivri Y, Brantjes NBM. Pollination of Serapias Vomeracea Briq (Orchidaceae) By Imitation of Holes for Sleeping Solitary Male Bees (Hymenoptera). Acta Bot Neerl. 2015;30(1–2):69–73.
Google Scholar
Felicioli A, Strumia F, Filippi L, Pinzauti M. Observations on the relation between orchids of the genus Serapias and their pollinators in an area of central Tuscany. Frustula Entomol. 1998;21:103–8.
Google Scholar
Dodson CH, Frymire GP. Natural pollination of orchids. Missouri. Bot Gard Bull. 1961;49:133–9.
Google Scholar
Neirenberg L. The mechanism for the maintenance of species integrity in sympatrically occurring equitant onci- diums in the Caribbean. Am Orchid Soc Bull. 1972;41:873–82.
Google Scholar
BogarÍn D, FernÁndez M, Borkent A, Heemskerk A, Pupulin F, RamÍrez S, et al. Pollination of Trichosalpinx (Orchidaceae: Pleurothallidinae) by biting midges (Diptera: Ceratopogonidae). Bot J Linn Soc. 2018;186(4):510–43.
Google Scholar
Karremans AP, Pupulin F, Grimaldi D, Beentjes KK, Butôt R, Fazzi GE, et al. Pollination of Specklinia by nectar-feeding Drosophila: the first reported case of a deceptive syndrome employing aggregation pheromones in Orchidaceae. Ann Bot. 2015;116(3):437–55.
CAS
PubMed
PubMed Central
Google Scholar
Bergstrom G. Role of volatile chemicals in Ophrys- pollinator interactions. In: Harborne JB, editor. Biochemical aspects of plant and animal co-evolution. London: Academic Press; 1978. p. 207–32.
Google Scholar
Roy BA, Widmer A. Floral mimicry: a fascinating yet poorly understood phenomenon. Trends Plant Sci. 1999;4(8):325–30.
CAS
PubMed
Google Scholar
Schiestl FP. On the success of a swindle: pollination by deception in orchids. Naturwissenschaften. 2005;92(6):255–64.
CAS
PubMed
Google Scholar
Dafni A, Bernhardt P. Pollination of terrestrial orchids of Southern Australia and the Mediterranean region. Syst Ecol Evol Implic Evolutiona. 1990;24:193–252.
Google Scholar
Carmona-Díaz G, García-Franco JG. Reproductive success in the Mexican rewardless Oncidium cosymbephorum (Orchidaceae) facilitated by the oil-rewarding Malpighia glabra (Malpighiaceae). Plant Ecol. 2009;203(2):253–61.
Google Scholar
Dressler R. Orchids – natural history and classification. 1st ed. Cambridge: Hardvard University Press; 1981.
Google Scholar
Rudall PJ, Bateman RM. Roles of synorganisation, zygomorphy and heterotopy in floral evolution: the gynostemium and labellum of orchids and other lilioid monocots. Biol Rev Camb Philos Soc. 2002;77(3):403–41.
PubMed
Google Scholar
Kurzweil H, Kocyan A. Ontogeny of Orchid Flowers. In: Kull T, Arditti J, editors. Orchid biology: reviews and perspective VIII. Dordrecht: Kluwer Academic Publishers; 2002. p. 581.
Google Scholar
Dressler R. Orchids – natural history and classification. 2nd ed. Cambridge: Hardvard University Press; 1990.
Google Scholar
Tsai W, Kuoh C, Chuang M, Chen W. MADS box genes displayed distinct floral morphogenetic roles in. Plant Cell Physiol. 2004;45(7):831–44.
CAS
PubMed
Google Scholar
Tsai WC, Pan ZJ, Hsiao YY, Jeng MF, Wu TF, Chen WH, et al. Interactions of B-class complex proteins involved in tepal development in Phalaenopsis orchid. Plant Cell Physiol. 2008;49(5):814–24.
CAS
PubMed
Google Scholar
Pan ZJ, Chen YY, Du JS, Chen YY, Chung MC, Tsai WC, et al. Flower development of Phalaenopsis orchid involves functionally divergent SEPALLATA-like genes. New Phytol. 2014;202(3):1024–42.
CAS
PubMed
PubMed Central
Google Scholar
Hsu H-F, Hsu W-H, Lee Y-I, Mao W-T, Yang J-Y, Li J-Y, et al. Model for perianth formation in orchids. Nat Plants. 2015;1(5):15046. http://www.nature.com/articles/nplants201546.
Huang J-Z, Lin C-P, Cheng T-C, Huang Y-W, Tsai Y-J, Cheng S-Y, et al. The genome and transcriptome of Phalaenopsis yield insights into floral organ development and flowering regulation. PeerJ. 2016;4(2016):e2017. https://peerj.com/articles/2017.
Dirks-Mulder A, Butôt R, van Schaik P, Wijnands JWPM, van den Berg R, Krol L, et al. Exploring the evolutionary origin of floral organs of Erycina pusilla, an emerging orchid model system. BMC Evol Biol. 2017;17(1):89.
PubMed
PubMed Central
Google Scholar
Theißen G. Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol. 2001;4(1):75–85.
PubMed
Google Scholar
Coen E, Meyerowit E. The war of the whorls: genetic interactions controlling flower development. Nature. 1991;353(September):31.
CAS
PubMed
Google Scholar
Theißen G, Saedler H. Floral quartets. Nature. 2001;409:469–71. https://doi.org/10.1038/35054172.
Article
PubMed
Google Scholar
Irish VF, Litt A. Flower development and evolution: gene duplication, diversification and redeployment. Curr Opin Genet Dev. 2005;15(4):454–60.
CAS
PubMed
Google Scholar
Pan ZJ, Cheng CC, Tsai WC, Chung MC, Chen WH, Hu JM, et al. The duplicated B-class MADS-box genes display dualistic characters in orchid floral organ identity and growth. Plant Cell Physiol. 2011;52(9):1515–31.
CAS
PubMed
Google Scholar
Galego L, Almeida J. Role of DIVARICATA in the control of dorsoventral asymmetry in Antirrhinum flowers. Genes Dev. 2002 Apr 1;16(7):880–91. http://genesdev.cshlp.org/content/16/7/880.abstract.
Costa MMR, Fox S, Hanna AI, Baxter C, Coen E. Evolution of regulatory interactions controlling floral asymmetry. Development. 2005;132(22):5093 LP – 5101. http://dev.biologists.org/content/132/22/5093.abstract.
Raimundo J, Sobral R, Bailey P, Azevedo H, Galego L, Almeida J, et al. A subcellular tug of war involving three MYB-like proteins underlies a molecular antagonism in Antirrhinum flower asymmetry. Plant J. 2013;75(4):527–38.
CAS
PubMed
Google Scholar
Valoroso MC, Sobral R, Saccone G, Salvemini M, Costa MMR, Aceto S. Evolutionary Conservation of the Orchid MYB Transcription Factors DIV, RAD, and DRIF. Front Plant Sci. 2019;15:1359.
Google Scholar
Madrigal Y, Alzate JF, González F, Pabón-Mora N. Evolution of RADIALIS and DIVARICATA gene lineages in flowering plants with an expanded sampling in non-core eudicots. Am J Bot. 2019;106(3):334–51. https://doi.org/10.1002/ajb2.1243.
Article
CAS
PubMed
Google Scholar
De Paolo S, Salvemini M, Gaudio L, Aceto S. De Novo Transcriptome Assembly from Inflorescence of Orchis italica: analysis of Coding and Non-Coding Transcripts. PLoS ONE. 2014;9(7):e102155. https://doi.org/10.1371/journal.pone.0102155.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deaolo S, Gaudio L, Aceto S. Analysis of the TCP genes expressed in the inflorescence of the orchid Orchis italica. Sci Rep. 2015;5:1–11. https://doi.org/10.1038/srep16265.
Article
CAS
Google Scholar
Song I-J, Nakamura T, Fukuda T, Yokoyama J, Ito T, Ichikawa H, et al. Spatiotemporal expression of duplicate AGAMOUS orthologues during floral development in Phalaenopsis. Dev Genes Evol. 2006;216(6):301–13.
CAS
PubMed
Google Scholar
Xu Y, Teo LL, Zhou J, Kumar PP, Yu H. Floral organ identity genes in the orchid Dendrobium crumenatum. Plant J. 2006;46(1):54–68.
CAS
PubMed
Google Scholar
Hsu HF, Hsieh WP, Chen MK, Chang YY, Yang CH. C/D class MADS box genes from two monocots, orchid (oncidium gower ramsey) and lily (lilium longiflorum), exhibit different effects on floral transition and formation in Arabidopsis thaliana. Plant Cell Physiol. 2010;51(6):1029–45.
CAS
PubMed
Google Scholar
Wang SY, Lee PF, Lee YI, Hsiao YY, Chen YY, Pan ZJ, et al. Duplicated C-Class MADS-Box genes reveal distinct roles in gynostemium development in cymbidium ensifolium (Orchidaceae). Plant Cell Physiol. 2011;52(3):563–77.
CAS
PubMed
Google Scholar
Chen Y-Y, Lee P-F, Hsiao Y-Y, Wu W-L, Pan Z-J, Lee Y-I, et al. C- and D-class MADS-Box Genes from Phalaenopsis equestris (Orchidaceae) display functions in gynostemium and ovule development. Plant Cell Physiol. 2012;53(6):1053–67.
CAS
PubMed
Google Scholar
Salemme M, Sica M, Gaudio L, Aceto S. The OitaAG and OitaSTK genes of the orchid Orchis italica: a comparative analysis with other C- and D-class MADS-box genes. Mol Biol Rep. 2013;40(5):3523–35.
CAS
PubMed
Google Scholar
Tsai CC, Chiang YC, Huang SC, Chen CH, Chou CH. Molecular phylogeny of Phalaenopsis Blume (Orchidaceae) on the basis of plastid and nuclear DNA. Plant Syst Evol. 2010;288(1):77–98. https://doi.org/10.1007/s00606-010-0314-1.
Article
CAS
Google Scholar
Christenson EA. Phalaenopsis: A Monograph. Portland: Timber Press; 2001. p. 330.
Google Scholar
Alec M. Pridgeon, Phillip J. Cribb FNR, editor. Genera Orchidacearum Volume 6: Epidendroideae. Oxford: Oxford University Press; 2014. 544 p.
Xiaohua J, Dezhu L, Zongxin R, Xiaoguo X. A generalized deceptive pollination system of Doritis pulcherrima (Aeridinae: Orchidaceae) with non-reconfigured pollinaria. BMC Plant Biol. 2012;12:1–8.
Google Scholar
Freudenstein JV, Chase MW. Phylogenetic relationships in Epidendroideae (Orchidaceae), one of the great flowering plant radiations: progressive specialization and diversification. Ann Bot. 2015;115(4):665–81.
CAS
PubMed
PubMed Central
Google Scholar
Dirks-Mulder A. Evolution and development of orchid flowers and fruits. Leiden University; 2020. Available from: http://hdl.handle.net/1887/84583.
Andrews S. FastQC [Internet]. 2010. Available from: 30 October 2018.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
CAS
PubMed
PubMed Central
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52.
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9.
CAS
PubMed
PubMed Central
Google Scholar
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22(13):1658–9. https://doi.org/10.1093/bioinformatics/btl158.
Article
CAS
PubMed
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106. https://doi.org/10.1186/gb-2010-11-10-r106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang GQ, Liu KW, Li Z, Lohaus R, Hsiao YY, Niu SC, et al. The Apostasia genome and the evolution of orchids. Nature. 2017;549(7672):379–83. https://doi.org/10.1038/nature23897.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pabón-Mora N, Suárez-Baron H, Ambrose BA, González F. Flower development and perianth identity candidate genes in the basal angiosperm Aristolochia fimbriata (Piperales: aristolochiaceae). Front Plant Sci. 2015;6:1–20.
Google Scholar
Acri-Nunes-Miranda R, Palomino M. Expression of paralogous SEP-, FUL-, AG- and STK-like MADS-box genes in wild-type and peloric Phalaenopsis flowers. Front Plant Sci. 2014;5:76. https://doi.org/10.3389/fpls.2014.00076.
Article
PubMed
PubMed Central
Google Scholar
Su CL, Chen WC, Lee AY, Chen CY, Chang YCA, Chao YT, et al. A modified ABCDE model of flowering in orchids based on gene expression profiling studies of the moth orchid Phalaenopsis aphrodite. PLoS ONE. 2013;8:11.
CAS
Google Scholar
Cai J, Liu X, Vanneste K, Proost S, Tsai W-C, Liu K-W, et al. The genome sequence of the orchid Phalaenopsis equestris. Nat Genet. 2015;47(1):65–72. https://doi.org/10.1038/ng.3149.
Article
CAS
PubMed
Google Scholar
Tsai WC, Kuoh CS, Chuang MH, Chen WH, Chen HH. Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant Cell Physiol. 2004;45(7):831–44.
CAS
PubMed
Google Scholar
Kurzweil H. Developmental studies in orchid flowers I: epidendroid and vandoid species. Nord J Bot. 1987;7(4):427–42. https://doi.org/10.1111/j.1756-1051.1987.tb00964.x.
Article
Google Scholar
Endress PK. Floral structure and evolution of primitive angiosperms: recent advances. Plant Syst Evol. 1994;192(1/2):79–97. http://www.jstor.org/stable/23674608.
Ohmori S, Kimizu M, Sugita M, Miyao A, Hirochika H, Uchida E, et al. MOSAIC FLORAL ORGANS1, an AGL6-Like MADS Box Gene, Regulates Floral Organ Identity and Meristem Fate in Rice. Plant Cell. 2009;21(10):3008–25. https://doi.org/10.1105/tpc.109.068742.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thompson BE, Bartling L, Whipple C, Hall DH, Sakai H, Schmidt R, et al. bearded-ear Encodes a MADS Box Transcription Factor Critical for Maize Floral Development. Plant Cell. 2009;21(9):2578 LP–2590. http://www.plantcell.org/content/21/9/2578.abstract.
Koo SC, Bracko O, Park MS, Schwab R, Chun HJ, Park KM, et al. Control of lateral organ development and flowering time by the Arabidopsis thaliana MADS-box Gene AGAMOUS-LIKE6. Plant J. 2010;62(5):807–16. https://doi.org/10.1111/j.1365-313X.2010.04192.x.
Article
CAS
PubMed
Google Scholar
Li H, Liang W, Jia R, Yin C, Zong J, Kong H, et al. The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice. Cell Res. 2010;20(3):299–313. https://doi.org/10.1038/cr.2009.143.
Article
CAS
PubMed
Google Scholar
Gravendeel B, Dirks-Mulder A. Floral development: lip formation in orchids unravelled. Nat Plants. 2015;1(5):15056. https://doi.org/10.1038/nplants.2015.56.
Article
CAS
Google Scholar
Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF. B and C floral organ identity functions require SEPALLATTA MADS-box genes. Nature. 2000;405(6783):200–3.
CAS
PubMed
Google Scholar
Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF. The SEP4 Gene of Arabidopsis thaliana Functions in Floral Organ and Meristem Identity. Curr Biol. 2004;14(21):1935–40. https://doi.org/10.1016/j.cub.2004.10.028.
Article
CAS
PubMed
Google Scholar
Hileman LC, Cubas P. An expanded evolutionary role for flower symmetry genes. J Biol. 2009;8(10):8–11.
Google Scholar
Valoroso MC, De Paolo S, Iazzetti G, Aceto S. Transcriptome-wide identification and expression analysis of DIVARICATA-and RADIALIS-like genes of the mediterranean orchid Orchis Italica. Genome Biol Evol. 2017;9(6):1418–31.
Google Scholar
Madrigal Y, Alzate JF, Pabón-Mora N. Evolution and Expression Patterns of TCP Genes in Asparagales. Front Plant Sci. 2017;8:1–17. https://doi.org/10.3389/fpls.2017.00009/full.
Article
Google Scholar
Lin Y-F, Chen Y-Y, Hsiao Y-Y, Shen C-Y, Hsu J-L, Yeh C-M, et al. Genome-wide identification and characterization of TCP genes involved in ovule development of Phalaenopsis equestris. J Exp Bot. 2016;67(17):5051–66. https://doi.org/10.1093/jxb/erw273.
Article
CAS
PubMed
PubMed Central
Google Scholar