Yanze N, Spring J, Schmidli C, Schmid V. Conservation of Hox/ParaHox-related genes in the early development of a cnidarian. Dev Biol. 2001;236(1):89–98.
Article
CAS
PubMed
Google Scholar
Finnerty JR. Cnidarians reveal intermediate stages in the evolution of Hox clusters and axial complexity. Am Zool. 2001;41(3):608–20.
CAS
Google Scholar
Ryan JF, Pang K, NISC Comparative Sequencing Program, Mullikin JC, Martindale MQ, Baxevanis AD. The homeodomain complement of the ctenophore Mnemiopsis leidyi suggests that Ctenophora and Porifera diverged prior to the ParaHoxozoa. Evodevo. 2010;1(1):9.
Article
PubMed
PubMed Central
Google Scholar
He SN, del Viso F, Chen CY, Ikmi A, Kroesen AE, Gibson MC. An axial Hox code controls tissue segmentation and body patterning in Nematostella vectensis. Science. 2018;361(6409):1377.
Article
CAS
PubMed
Google Scholar
McGinnis W, Krumlauf R. Homeobox genes and axial patterning. Cell. 1992;68(2):283–302.
Article
CAS
PubMed
Google Scholar
Pearson JC, Lemons D, McGinnis W. Modulating Hox gene functions during animal body patterning. Nat Rev Genet. 2005;6(12):893–904.
Article
CAS
PubMed
Google Scholar
Lemons D, McGinnis W. Genomic evolution of Hox gene clusters. Science. 2006;313(5795):1918–22.
Article
CAS
PubMed
Google Scholar
Krumlauf R. Hox genes in vertebrate development. Cell. 1994;78(2):191–201.
Article
CAS
PubMed
Google Scholar
Garcia-Fernàndez J. The genesis and evolution of homeobox gene clusters. Nat Rev Genet. 2005;6(12):881–92.
Article
PubMed
Google Scholar
Mallo M, Wellik DM, Deschamps J. Hox genes and regional patterning of the vertebrate body plan. Dev Biol. 2010;344(1):7–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferrier DEK, Minguillon C. Evolution of the Hox/ParaHox gene clusters. Int J Dev Biol. 2003;47(7–8):605–11.
CAS
PubMed
Google Scholar
Duboule D. The rise and fall of Hox gene clusters. Development. 2007;134(14):2549–60.
Article
CAS
PubMed
Google Scholar
Duboule D. Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Dev Suppl. 1994;1994:135–42.
Google Scholar
Deutsch J, Le Guyader H. The neuronal zootype. An hypothesis. Cr Acad Ssci III-Vie. 1998;321(9):713–9.
Article
CAS
Google Scholar
Monteiro AS, Ferrier DEK. Hox genes are not always Colinear. Int J Biol Sci. 2006;2(3):95–103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schiemann SM, Martín-Durán JM, Børve A, Vellutini BC, Passamaneck YJ, Hejnol A. Clustered brachiopod Hox genes are not expressed collinearly and are associated with lophotrochozoan novelties. Proc Natl Acad Sci USA. 2017;114(10):E1913–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lewis EB. A gene complex controlling segmentation in Drosophila. Nature. 1978;276(5688):565–70.
Article
CAS
PubMed
Google Scholar
Beeman RW. A homeotic gene-cluster in the red flour beetle. Nature. 1987;327(6119):247–9.
Article
Google Scholar
Graham A, Papalopulu N, Krumlauf R. The murine and drosophila homeobox gene complexes have common features of organization and expression. Cell. 1989;57(3):367–78.
Article
CAS
PubMed
Google Scholar
Kenyon C, Wang B. A cluster of antennapedia-class homeobox genes in a nonsegmented animal. Science. 1991;253(5019):516–7.
Article
CAS
PubMed
Google Scholar
Arenas-Mena C, Martinez P, Cameron RA, Davidson EH. Expression of the Hox gene complex in the indirect development of a sea urchin. Proc Natl Acad Sci USA. 1998;95(22):13062–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arenas-Mena C, Cameron AR, Davidson EH. Spatial expression of Hox cluster genes in the ontogeny of a sea urchin. Development. 2000;127(21):4631–43.
CAS
PubMed
Google Scholar
Irvine SQ, Martindale MQ. Expression patterns of anterior Hox genes in the polychaete Chaetopterus: correlation with morphological boundaries. Dev Biol. 2000;217(2):333–51.
Article
CAS
PubMed
Google Scholar
Hinman VF, O’Brien EK, Richards GS, Degnan BM. Expression of anterior Hox genes during larval development of the gastropod Haliotis asinina. Evol Dev. 2003;5(5):508–21.
Article
CAS
PubMed
Google Scholar
Lee PN, Callaerts P, de Couet HG, Martindale MQ. Cephalopod Hox genes and the origin of morphological novelties. Nature. 2003;424(6952):1061–5.
Article
CAS
PubMed
Google Scholar
Aronowicz J, Lowe CJ. Hox gene expression in the hemichordate Saccoglossus kowalevskii and the evolution of deuterostome nervous systems. Integr Comp Biol. 2006;46(6):890–901.
Article
CAS
PubMed
Google Scholar
Kulakova M, Bakalenko N, Novikova E, Cook CE, Eliseeva E, Steinmetz PRH, et al. Hox gene expression in larval development of the polychaetes Nereis virens and Platynereis dumerilii (Annelida, Lophotrochozoa). Dev Genes Evol. 2007;217(1):39–54.
Article
CAS
PubMed
Google Scholar
Hejnol A, Martindale MQ. Coordinated spatial and temporal expression of Hox genes during embryogenesis in the acoel Convolutriloba longifissura. BMC Biol. 2009;7:65.
Article
PubMed
PubMed Central
CAS
Google Scholar
Samadi L, Steiner G. Involvement of Hox genes in shell morphogenesis in the encapsulated development of a top shell gastropod (Gibbula varia L.). Dev Genes Evol. 2009;219(9–10):523–30.
Article
PubMed
Google Scholar
Samadi L, Steiner G. Expression of Hox genes during the larval development of the snail, Gibbula varia (L.)-further evidence of non-colinearity in molluscs. Dev Genes Evol. 2010;220(5–6):161–72.
Article
CAS
PubMed
Google Scholar
Bakalenko NI, Novikova EL, Nesterenko AY, Kulakova MA. Hox gene expression during postlarval development of the polychaete Alitta virens. Evodevo. 2013;4:13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Janssen R, Eriksson BJ, Tait NN, Budd GE. Onychophoran Hox genes and the evolution of arthropod Hox gene expression. Front Zool. 2014;11:22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Smith FW, Boothby TC, Giovannini I, Rebecchi L, Jockusch EL, Goldstein B. The compact body plan of tardigrades evolved by the loss of a large body region. Curr Biol. 2016;26(2):224–9.
Article
CAS
PubMed
Google Scholar
Fröbius AC, Funch P. Rotiferan Hox genes give new insights into the evolution of metazoan bodyplans. Nat Commun. 2017;8:1.
Article
CAS
Google Scholar
Fritsch M, Wollesen T, de Oliveira AL, Wanninger A. Unexpected co-linearity of Hox gene expression in an aculiferan mollusk. BMC Evol Biol. 2015;15:151.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fritsch M, Wollesen T, Wanninger A. Hox and ParaHox gene expression in early body plan patterning of polyplacophoran mollusks. J Exp Zool Part B. 2016;326(2):89–104.
Article
CAS
Google Scholar
Hiebert LS, Maslakova SA. Hox genes pattern the anterior- posterior axis of the juvenile but not the larva in a maximally indirect developing invertebrate, Micrura alaskensis (Nemertea). BMC Biol. 2015;13:23.
Article
PubMed
PubMed Central
Google Scholar
Gonzalez P, Uhlinger KR, Lowe CJ. The adult body plan of indirect developing hemichordates develops by adding a Hox-patterned trunk to an anterior larval territory. Curr Biol. 2017;27(1):87–95.
Article
CAS
PubMed
Google Scholar
Wollesen T, Monje SVR, de Oliveira AL, Wanninger A. Staggered Hox expression is more widespread among molluscs than previously appreciated. Proc Biol Sci. 1888;2018(285):20181513.
Google Scholar
Gąsiorowski L, Hejnol A. Hox gene expression in postmetamorphic juveniles of the brachiopod Terebratalia transversa. EvoDevo. 2019;10:1.
Article
PubMed
PubMed Central
Google Scholar
Huan P, Wang Q, Tan S, Liu B. Dorsoventral decoupling of Hox gene expression underpins the diversification of molluscs. Proc Natl Acad Sci USA. 2019;117(1):503–12.
Article
PubMed
CAS
PubMed Central
Google Scholar
Currie KW, Brown DD, Zhu S, Xu C, Voisin V, Bader GD, et al. HOX gene complement and expression in the planarian Schmidtea mediterranea. EvoDevo. 2016;7:7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Seo HC, Edvardsen RB, Maeland AD, Bjordal M, Jensen MF, Hansen A, et al. Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica. Nature. 2004;431(7004):67–71.
Article
CAS
PubMed
Google Scholar
Ikuta T, Yoshida N, Satoh N, Saiga H. Ciona intestinalis Hox gene cluster: its dispersed structure and residual colinear expression in development. Proc Natl Acad Sci USA. 2004;101(42):15118–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hiebert LS, Maslakova SA. Expression of Hox, Cdx, and Six3/6 genes in the hoplonemertean Pantinonemertes californiensis offers insight into the evolution of maximally indirect development in the phylum Nemertea. EvoDevo. 2015;6:26.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fröbius AC, Matus DQ, Seaver EC. Genomic organization and expression demonstrate spatial and temporal Hox gene colinearity in the lophotrochozoan Capitella sp. I. PLoS ONE. 2008;3:12.
Article
CAS
Google Scholar
Mooi R, David B. Radial symmetry, the anterior/posterior axis, and echinoderm Hox genes. Annu Rev Ecol Evol Syst. 2008;39:43–62.
Article
Google Scholar
Pascual-Anaya J, Adachi N, Alvarez S, Kuratani S, D’Aniello S, Garcia-Fernandez J. Broken colinearity of the amphioxus Hox cluster. EvoDevo. 2012;3(1):28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pascual-Anaya J, Sato I, Sugahara F, Higuchi S, Paps J, Ren YD, et al. Hagfish and lamprey Hox genes reveal conservation of temporal colinearity in vertebrates. Nat Ecol Evol. 2018;2(5):859–66.
Article
PubMed
Google Scholar
Emig C. Un nouvel embranchement: les Lophophorates. Bull Soc Zool France. 1977;102:341–4.
Google Scholar
Emig C. On the origin of the Lophophorata. J Zool Syst Evol Res. 1984;22(2):91–4.
Article
Google Scholar
Laumer CE, Bekkouche N, Kerbl A, Goetz F, Neves RC, Sørensen MV, et al. Spiralian phylogeny informs the evolution of microscopic lineages. Curr Biol. 2015;25(15):2000–6.
Article
CAS
PubMed
Google Scholar
Laumer CE, Fernandez R, Lemer S, Combosch D, Kocot KM, Riesgo A, et al. Revisiting metazoan phylogeny with genomic sampling of all phyla. Proc Biol Sci. 1906;2019(286):20190831.
Google Scholar
Marlétaz F, Peijnenburg K, Goto T, Satoh N, Rokhsar DS. A new spiralian phylogeny places the enigmatic arrow worms among gnathiferans. Curr Biol. 2019;29(2):312–8.
Article
PubMed
CAS
Google Scholar
Zverkov OA, Mikhailov KV, Isaev SV, Rusin LY, Popova OV, Logacheva MD, et al. Dicyemida and orthonectida: two stories of body plan simplification. Front Genet. 2019;10:443.
Article
CAS
PubMed
PubMed Central
Google Scholar
Halanych KM, Bacheller JD, Aguinaldo AMA, Liva SM, Hillis DM, Lake JA. Evidence from 18s ribosomal DNA that the lophophorates are protostome animals. Science. 1995;267(5204):1641–3.
Article
CAS
PubMed
Google Scholar
Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, et al. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature. 2008;452(7188):745–U755.
Article
CAS
PubMed
Google Scholar
Emig CC. Embryology of phoronida. Am Zool. 1977;17(1):21–37.
Article
Google Scholar
Santagata S. Phoronida. In: Wanninger A, editor. Evolutionary developmental biology of invertebrates 2. Berlin: Springer; 2015. p. 231–45.
Chapter
Google Scholar
Silén L. Developmental biology of Phoronidea of the Gullmar Fiord area (west coast of Sweden). Acta Zool. 1954;35(3):215–57.
Article
Google Scholar
Hermann K. Phoronida. In: Harrison FW, Woollacott RM, editors. Microscopic anatomy of invertebrates volume 13: Lophophorates, Entoprocta, and Cycliophora. New York: Wiley-Liss; 1997. p. 207–35.
Google Scholar
Temereva EN, Chichvarkhin A. A new phoronid species, Phoronis embryolabi, with a novel type of development, and consideration of phoronid taxonomy and DNA barcoding. Invertebr Syst. 2017;31(1):65–84.
Article
CAS
Google Scholar
Santagata S, Cohen BL. Phoronid phylogenetics (Brachiopoda; Phoronata): evidence from morphological cladistics, small and large subunit rDNA sequences, and mitochondrial cox1. Zool J Linn Soc. 2009;157(1):34–50.
Article
Google Scholar
Hirose M, Fukiage R, Katoh T, Kajihara H. Description and molecular phylogeny of a new species of Phoronis (Phoronida) from Japan, with a redescription of topotypes of P. ijimai Oka, 1897. Zookeys. 2014;398:1–31.
Article
Google Scholar
Nezlin LP. The development of monoaminergic elements of the nervous system in the actinotroch—planktonic larvae of Phoronopsis harmeri. Zh Evol Biokhim Fiziol. 1988;24(1):76–80.
CAS
Google Scholar
Temereva EN, Tsitrin EB. Development and organization of the larval nervous system in Phoronopsis harmeri: new insights into phoronid phylogeny. Front Zool. 2014;11(3):1–25.
Google Scholar
Bartolomaeus T. Ultrastructure and relationship between protonephridia and metanephridia in Phoronis muelleri (Phoronida). Zoomorphology. 1989;109(2):113–22.
Article
Google Scholar
Hayschmidt A. Catecholamine-containing, serotonin-Like, and FMRFamide-like immunoreactive neurons and processes in the nervous system of the early actinotroch larva of Phoronis vancouverensis (Phoronida)—distribution and development. Can J Zool. 1990;68(7):1525–36.
Article
CAS
Google Scholar
Hayschmidt A. Distribution of catecholamine-containing, serotonin-like and neuropeptide FMRFamide-like immunoreactive neurons and processes in the nervous system of the actinotroch larva of Phoronis muelleri (Phoronida). Cell Tissue Res. 1990;259(1):105–18.
Article
Google Scholar
Lacalli TC. Structure and organization of the nervous system in the actinotroch larva of Phoronis vancouverensis. Phil Trans R Soc Lond B. 1990;327(1244):655.
Article
Google Scholar
Bartolomaeus T. Ultrastructure and formation of the body cavity lining in Phoronis muelleri (Phoronida, Lophophorata). Zoomorphology. 2001;120(3):135–48.
Article
Google Scholar
Santagata S, Zimmer RL. Comparison of the neuromuscular systems among actinotroch larvae: systematic and evolutionary implications. Evol Dev. 2002;4(1):43–54.
Article
PubMed
Google Scholar
Santagata S. Structure and metamorphic remodeling of the larval nervous system and musculature of Phoronis pallida (Phoronida). Evol Dev. 2002;4(1):28–42.
Article
PubMed
Google Scholar
Santagata S. Larval development of Phoronis pallida (Phoronida): implications for morphological convergence and divergence among larval body plans. J Morphol. 2004;259(3):347–58.
Article
PubMed
Google Scholar
Temereva EN, Malakhov VV. Development of excretory organs in Phoronopsis harmeri (Phoronida): from protonephridium to nephromixium. Zool Zh. 2006;85(8):915–24.
Google Scholar
Temereva EN, Malakhov VV. Embryogenesis and larval development of Phoronopsis harmeri Pixell, 1912 (Phoronida): dual origin of the coelomic mesoderm. Invertebr Reprod Dev. 2007;50(2):57–66.
Article
Google Scholar
Temereva EN. The digestive tract of actinotroch larvae (Lophotrochozoa, Phoronida): anatomy, ultrastructure, innervations, and some observations of metamorphosis. Can J Zool. 2010;88(12):1149–68.
Article
Google Scholar
Temereva E, Wanninger A. Development of the nervous system in Phoronopsis harmeri (Lophotrochozoa, Phoronida) reveals both deuterostome- and trochozoan-like features. BMC Evol Biol. 2012;12:27.
Article
Google Scholar
Temereva EN, Malakhov VV. Embryogenesis in phoronids. Invertebr Biol. 2012;9(1):1–39.
Article
Google Scholar
Temereva EN. Ventral Nerve Cord in Phoronopsis harmeri Larvae. J Exp Zool Part B. 2012;318B(1):26–34.
Article
Google Scholar
Temereva EN, Tsitrin EB. Development, organization, and remodeling of phoronid muscles from embryo to metamorphosis (Lophotrochozoa: phoronida). BMC Dev Biol. 2013;13:14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Temereva EN, Malakhov VV. Metamorphic remodeling of morphology and the body cavity in Phoronopsis harmeri (Lophotrochozoa, Phoronida): the evolution of the phoronid body plan and life cycle. BMC Evol Biol. 2015;15:229.
Article
PubMed
PubMed Central
CAS
Google Scholar
Temereva EN. Ground plan of the larval nervous system in phoronids: evidence from larvae of viviparous phoronid. Evol Dev. 2017;19(4):171–89.
Article
PubMed
Google Scholar
Rattenbury JC. The embryology of Phoronopsis viridis. J Morphol. 1954;95(2):289–349.
Article
Google Scholar
Andrikou C, Passamaneck YJ, Lowe CJ, Martindale MQ, Hejnol A. Molecular patterning during the development of Phoronopsis harmeri reveals similarities to rhynchonelliform brachiopods. EvoDevo. 2019;10:33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pennerstorfer M, Scholtz G. Early cleavage in Phoronis muelleri (Phoronida) displays spiral features. Evol Dev. 2012;14(6):484–500.
Article
PubMed
Google Scholar
Freeman G. The bases for and timing of regional specification during larval development in Phoronis. Dev Biol. 1991;147(1):157–73.
Article
CAS
PubMed
Google Scholar
Freeman G, Martindale MQ. The origin of mesoderm in phoronids. Dev Biol. 2002;252(2):301–11.
Article
CAS
PubMed
Google Scholar
Luo YJ, Kanda M, Koyanagi R, Hisata K, Akiyama T, Sakamoto H, et al. Nemertean and phoronid genomes reveal lophotrochozoan evolution and the origin of bilaterian heads. Nat Ecol Evol. 2018;2(1):141–51.
Article
PubMed
Google Scholar
Luo YJ, Takeuchi T, Koyanagi R, Yamada L, Kanda M, Khalturina M, et al. The Lingula genome provides insights into brachiopod evolution and the origin of phosphate biomineralization. Nat Commun. 2015;6:8301.
Article
CAS
PubMed
Google Scholar
Hejnol A, Vellutini BC. Larval evolution: I’ll Tail You later. Curr Biol. 2017;27(1):R21–4.
Article
CAS
PubMed
Google Scholar
de Rosa R, Grenier JK, Andreeva T, Cook CE, Adoutte A, Akam M, et al. Hox genes in brachiopods and priapulids and protostome evolution. Nature. 1999;399(6738):772–6.
Article
CAS
PubMed
Google Scholar
Lowe CJ, Wu M, Salic A, Evans L, Lander E, Stange-Thomann N, et al. Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell. 2003;113(7):853–65.
Article
CAS
PubMed
Google Scholar
Steinmetz PRH, Urbach R, Posnien N, Eriksson J, Kostyuchenko RP, Brena C, et al. Six3 demarcates the anterior-most developing brain region in bilaterian animals. Evodevo. 2010;1:14.
Article
PubMed
PubMed Central
Google Scholar
Santagata S, Resh C, Hejnol A, Martindale MQ, Passamaneck YJ. Development of the larval anterior neurogenic domains of Terebratalia transversa (Brachiopoda) provides insights into the diversification of larval apical organs and the spiralian nervous system. Evodevo. 2012;3:3.
Article
PubMed
PubMed Central
Google Scholar
Kumamoto T, Hanashima C. Evolutionary conservation and conversion of Foxg1 function in brain development. Dev Growth Differ. 2017;59(4):258–69.
Article
PubMed
Google Scholar
Fritzenwanker JH, Gerhart J, Freeman RM, Lowe CJ. The Fox/Forkhead transcription factor family of the hemichordate Saccoglossus kowalevskii. Evodevo. 2014;5:17.
Article
PubMed
PubMed Central
Google Scholar
Skovsted CB, Brock GA, Paterson JR, Holmer LE, Budd GE. The scleritome of Eccentrotheca from the lower Cambrian of South Australia: lophophorate affinities and implications for tommotiid phylogeny. Geology. 2008;36(2):171–4.
Article
Google Scholar
Skovsted CB, Brock GA, Topper TP, Paterson JR, Holmer LE. Scleritome construction, biofacies, biostratigraphy and systematics of the tommotiid Eccentrotheca helenia sp. Nov. from the early Cambrian of South Australia. Palaeontology. 2011;54:253–86.
Article
Google Scholar
Bleidorn C. Recent progress in reconstructing lophotrochozoan (spiralian) phylogeny. Org Divers Evol. 2019;2019:1–10.
Google Scholar
Passamaneck YJ, Halanych KM. Evidence from Hox genes that bryozoans are lophotrochozoans. Evol Dev. 2004;6(4):275–81.
Article
CAS
PubMed
Google Scholar
Flot JF, Hespeels B, Li X, Noel B, Arkhipova I, Danchin EGJ, et al. Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature. 2013;500(7463):453–7.
Article
CAS
PubMed
Google Scholar
Wasik K, Gurtowski J, Zhou X, Ramos OM, Delás MJ, Battistoni G, et al. Genome and transcriptome of the regeneration-competent flatworm, Macrostomum lignano. Proc Natl Acad Sci USA. 2015;112(40):12462–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wysocka-Diller JW, Aisemberg GO, Baumgarten M, Levine M, Macagno ER. Characterization of a Homolog of Bithorax-Complex Genes in the Leech Hirudo medicinalis. Nature. 1989;341(6244):760–3.
Article
CAS
PubMed
Google Scholar
Nardellhaefliger D, Shankland M. Lox2, a putative leech segment identity gene, is expressed in the same segmental domain in different stem-cell lineages. Development. 1992;116(3):697.
Google Scholar
Hejnol A. A twist in time–the evolution of spiral cleavage in the light of animal phylogeny. Integr Comp Biol. 2010;50(5):695–706.
Article
PubMed
Google Scholar
Simakov O, Marlétaz F, Cho SJ, Edsinger-Gonzales E, Havlak P, Hellsten U, et al. Insights into bilaterian evolution from three spiralian genomes. Nature. 2013;493(7433):526–31.
Article
CAS
PubMed
Google Scholar
Zwarycz AS, Nossa CW, Putnam NH, Ryan JF. Timing and scope of genomic expansion within annelida: evidence from Homeoboxes in the genome of the earthworm Eisenia fetida. Genome Biol Evol. 2016;8(1):271–81.
Article
CAS
Google Scholar
Albertin CB, Simakov O, Mitros T, Wang ZY, Pungor JR, Edsinger-Gonzales E, et al. The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature. 2015;524(7564):220.
Article
CAS
PubMed
PubMed Central
Google Scholar
Belcaid M, Casaburi G, McAnulty SJ, Schmidbaur H, Suria AM, Moriano-Gutierrez S, et al. Symbiotic organs shaped by distinct modes of genome evolution in cephalopods. Proc Natl Acad Sci USA. 2019;116(8):3030–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang GF, Fang XD, Guo XM, Li L, Luo RB, Xu F, et al. The oyster genome reveals stress adaptation and complexity of shell formation. Nature. 2012;490(7418):49–54.
Article
CAS
PubMed
Google Scholar
Barucca M, Olmo E, Canapa A. Hox and paraHox genes in bivalve molluscs. Gene. 2003;317(1–2):97–102.
Article
CAS
PubMed
Google Scholar
Merkel JW, Lieb B. Novel and conserved features of the Hox cluster of Entoprocta (Kamptozoa). J Phylogenet Evol Biol. 2018;6(1):194.
Article
Google Scholar
Gonzalez P, Jiang JZ, Lowe CJ. The development and metamorphosis of the indirect developing acorn worm Schizocardium californicum (Enteropneusta: Spengelidae). Front Zool. 2018;15:26.
Article
PubMed
PubMed Central
CAS
Google Scholar
Haug JT. Why the term “larva” is ambiguous, or what makes a larva? Acta Zool. 2018;48:15–34.
Google Scholar
Kuzmina TV, Malakhov VV. Structure of the brachiopod lophophore. Paleontol J. 2007;41(5):520–36.
Article
Google Scholar
Freeman G. A developmental basis for the Cambrian radiation. Zool Sci (Tokyo). 2007;24(2):113–22.
Article
Google Scholar
Hilton W. Phoronidea from the coast of southern California. J Entomol Zool. 1930;22:33–5.
Google Scholar
Marsden JR. Phoronidea from the Pacific coast of North America. Can J Zool. 1959;37(2):87–111.
Article
Google Scholar
Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics. 2011;27(8):1164–5.
Article
CAS
PubMed
Google Scholar
Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17(8):754–5.
Article
CAS
PubMed
Google Scholar
Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19(12):1572–4.
Article
CAS
PubMed
Google Scholar
Balczarek KA, Lai ZC, Kumar S. Evolution and functional diversification of the paired box (Pax) DNA-binding domains. Mol Biol Evol. 1997;14(8):829–42.
Article
CAS
PubMed
Google Scholar
Manousaki T, Feiner N, Begemann G, Meyer A, Kuraku S. Co-orthology of Pax4 and Pax6 to the fly eyeless gene: molecular phylogenetic, comparative genomic, and embryological analyses. Evol Dev. 2011;13(5):448–59.
Article
CAS
PubMed
Google Scholar
Wang W, Zhong J, Wang YQ. Comparative genomic analysis reveals the evolutionary conservation of Pax gene family. Genes Genetic Syst. 2010;85(3):193–206.
Article
CAS
Google Scholar
Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5(3):e9490.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hejnol A. In situ protocol for embryos and juveniles of Convolutriloba longifissura. Protoc Exch. 2008;201:101–12.
Google Scholar