Bharathan G, Sinha NR. The regulation of compound leaf development. Plant Physiol. 2001;127:1533–8.
CAS
PubMed
PubMed Central
Google Scholar
Hay A, Tsiantis M. KNOX genes: versatile regulators of plant development and diversity. Development. 2010;137:3153–65.
CAS
PubMed
Google Scholar
Monteiro A, Podlaha O. Wings, horns, and butterfly eyespots: how do complex traits evolve? PLoS Biol. 2009;7:e1000037.
PubMed Central
Google Scholar
Shubin N, Tabin C, Carroll S. Deep homology and the origins of evolutionary novelty. Nature. 2009;457:818–23.
CAS
PubMed
Google Scholar
Nakayama H, Yamaguchi T, Tsukaya H. Acquisition and diversification of cladodes: leaf-like organs in the genus Asparagus. Plant Cell. 2012;24:929–40.
CAS
PubMed
PubMed Central
Google Scholar
Nakayama H, Yamaguchi T, Tsukaya H. Modification and co-option of leaf developmental programs for the acquisition of flat structures in monocots: unifacial leaves in Juncus and cladodes in Asparagus. Front Plant Sci. 2013. https://doi.org/10.3389/fpls.2013.00248.
Article
PubMed
PubMed Central
Google Scholar
Reyes E, Sauquet H, Nadot S. Perianth symmetry changed at least 199 times in angiosperm evolution. Taxon. 2016;65:945–64.
Google Scholar
Kampny CM. Pollination and flower diversity in Scrophulariaceae. Bot Rev. 1995;61:350–66.
Google Scholar
Neal PR, Dafni A, Giurfa M. Floral symmetry and its role in plant-pollinator systems: terminology, distribution, and hypotheses. Annu Rev Ecol Syst. 1998;29:345–73.
Google Scholar
Cocucci AE, Anton AM. The grass flower: suggestions on its origin and evolution. Flora. 1988;181:353–62.
Google Scholar
Yuan Z, Gao S, Xue D-W, Luo D, Li L-T, Ding S-Y, et al. RETARDED PALEA1 controls palea development and floral zygomorphy in rice. Plant Physiol. 2009;149:235–44.
CAS
PubMed
PubMed Central
Google Scholar
O’Meara BC, Smith SD, Armbruster WS, Harder LD, Hardy CR, Hileman LC, et al. Non-equilibrium dynamics and floral trait interactions shape extant angiosperm diversity. Proc R Soc B Biol Sci. 2016;283:20152304.
Google Scholar
Sargent RD. Floral symmetry affects speciation rates in angiosperms. Proc R Soc Lond B Biol Sci. 2004;271:603–8.
Google Scholar
Rabosky DL, McCune AR. Reinventing species selection with molecular phylogenies. Trends Ecol Evol. 2010;25:68–74.
PubMed
Google Scholar
Reeves PA, Olmstead RG. Evolution of the TCP gene family in Asteridae: cladistic and network approaches to understanding regulatory gene family diversification and its impact on morphological evolution. Mol Biol Evol. 2003;20:1997–2009.
CAS
PubMed
Google Scholar
Martín-Trillo M, Cubas P. TCP genes: a family snapshot ten years later. Trends Plant Sci. 2010;15:31–9.
PubMed
Google Scholar
Yanhui C, Xiaoyuan Y, Kun H, Meihua L, Jigang L, Zhaofeng G, et al. The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol. 2006;60:107–24.
PubMed
Google Scholar
Ambawat S, Sharma P, Yadav NR, Yadav RC. MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants. 2013;19:307–21.
CAS
PubMed
PubMed Central
Google Scholar
Parapunova V, Busscher M, Busscher-Lange J, Lammers M, Karlova R, Bovy AG, et al. Identification, cloning and characterization of the tomato TCP transcription factor family. BMC Plant Biol. 2014;14:157.
PubMed
PubMed Central
Google Scholar
Luo D, Carpenter R, Vincent C, Copsey L, Coen E. Origin of floral asymmetry in Antirrhinum. Nature. 1996;383:794–9.
CAS
PubMed
Google Scholar
Luo D, Carpenter R, Copsey L, Vincent C, Clark J, Coen E. Control of organ asymmetry in flowers of Antirrhinum. Cell. 1999;99:367–76.
CAS
PubMed
Google Scholar
Gübitz T, Caldwell A, Hudson A. Rapid molecular evolution of CYCLOIDEA-like genes in Antirrhinum and its relatives. Mol Biol Evol. 2003;20:1537–44.
PubMed
Google Scholar
Hileman LC, Baum DA. Why do paralogs persist? Molecular evolution of CYCLOIDEA and related floral symmetry genes in Antirrhineae (Veronicaceae). Mol Biol Evol. 2003;20:591–600.
CAS
PubMed
Google Scholar
Corley SB, Carpenter R, Copsey L, Coen E. Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum. Proc Natl Acad Sci U S A. 2005;102:5068–73.
CAS
PubMed
PubMed Central
Google Scholar
Almeida J, Rocheta M, Galego L. Genetic control of flower shape in Antirrhinum majus. Development. 1997;124:1387–92.
CAS
PubMed
Google Scholar
Galego L, Almeida J. Role of DIVARICATA in the control of dorsoventral asymmetry in Antirrhinum flowers. Genes Dev. 2002;16:880–91.
CAS
PubMed
PubMed Central
Google Scholar
Raimundo J, Sobral R, Bailey P, Azevedo H, Galego L, Almeida J, et al. A subcellular tug of war involving three MYB-like proteins underlies a molecular antagonism in Antirrhinum flower asymmetry. Plant J. 2013;75:527–38.
CAS
PubMed
Google Scholar
Perez-Rodriguez M, Jaffe FW, Butelli E, Glover BJ, Martin C. Development of three different cell types is associated with the activity of a specific MYB transcription factor in the ventral petal of Antirrhinum majus flowers. Development. 2005;132:359–70.
CAS
PubMed
Google Scholar
Citerne HL, Möller M, Cronk QCB. Diversity of cycloidea -like genes in Gesneriaceae in relation to floral symmetry. Ann Bot. 2000;86:167–76.
CAS
Google Scholar
Gao Q, Tao J-H, Yan D, Wang Y-Z, Li Z-Y. Expression differentiation of CYC-like floral symmetry genes correlated with their protein sequence divergence in Chirita heterotricha (Gesneriaceae). Dev Genes Evol. 2008;218:341–51.
CAS
PubMed
Google Scholar
Preston JC, Martinez CC, Hileman LC. Gradual disintegration of the floral symmetry gene network is implicated in the evolution of a wind-pollination syndrome. Proc Natl Acad Sci U S A. 2011;108:2343–8.
CAS
PubMed
PubMed Central
Google Scholar
Preston JC, Barnett LL, Kost MA, Oborny NJ, Hileman LC. Optimization of virus-induced gene silencing to facilitate evo-devo studies in the emerging model species Mimulus guttatus (Phrymaceae). Ann Mo Bot Gard. 2014;99:301–12.
Google Scholar
Su S, Xiao W, Guo W, Yao X, Xiao J, Ye Z, et al. The CYCLOIDEA–RADIALIS module regulates petal shape and pigmentation, leading to bilateral corolla symmetry in Torenia fournieri (Linderniaceae). New Phytol. 2017;215:1582–93.
CAS
PubMed
Google Scholar
Yang X, Cui H, Yuan Z-L, Wang Y-Z. Significance of consensus CYC-binding sites found in the promoters of both ChCYC and ChRAD genes in Chirita heterotricha (Gesneriaceae). J Syst Evol. 2010;48:249–56.
Google Scholar
Yang X, Pang H-B, Liu B-L, Qiu Z-J, Gao Q, Wei L, et al. Evolution of double positive autoregulatory feedback loops in CYCLOIDEA2 clade genes is associated with the origin of floral zygomorphy[W]. Plant Cell. 2012;24:1834–47.
CAS
PubMed
PubMed Central
Google Scholar
Zhong J, Kellogg EA. Stepwise evolution of corolla symmetry in CYCLOIDEA2-like and RADIALIS-like gene expression patterns in Lamiales. Am J Bot. 2015;102:1260–7.
CAS
PubMed
Google Scholar
Zhong J, Kellogg EA. Duplication and expression of CYC2-like genes in the origin and maintenance of corolla zygomorphy in Lamiales. New Phytol. 2015;205:852–68.
CAS
PubMed
Google Scholar
Zhou X-R, Wang Y-Z, Smith JF, Chen R. Altered expression patterns of TCP and MYB genes relating to the floral developmental transition from initial zygomorphy to actinomorphy in Bournea (Gesneriaceae). New Phytol. 2008;178:532–43.
CAS
PubMed
Google Scholar
Stull GW, de Stefano RD, Soltis DE, Soltis PS. Resolving basal lamiid phylogeny and the circumscription of Icacinaceae with a plastome-scale data set. Am J Bot. 2015;102:1794–813.
CAS
PubMed
Google Scholar
Zhang J, Stevens PF, Zhang W. Evolution of floral zygomorphy in androecium and corolla in Solanaceae. J Syst Evol. 2017;55:581–90.
Google Scholar
Machemer K, Shaiman O, Salts Y, Shabtai S, Sobolev I, Belausov E, et al. Interplay of MYB factors in differential cell expansion, and consequences for tomato fruit development. Plant J. 2011;68:337–50.
CAS
PubMed
Google Scholar
Gao A, Zhang J, Zhang W. Evolution of RAD- and DIV-like genes in plants. Int J Mol Sci. 2017;18:1961.
PubMed Central
Google Scholar
Sengupta A, Hileman LC. Novel traits, flower symmetry, and transcriptional autoregulation: new hypotheses from bioinformatic and experimental data. Front Plant Sci. 2018. https://doi.org/10.3389/fpls.2018.01561.
Article
PubMed
PubMed Central
Google Scholar
Fernandez-Pozo N, Zheng Y, Snyder SI, Nicolas P, Shinozaki Y, Fei Z, et al. The tomato expression atlas. Kelso J, editor. Bioinformatics. 2017;33:2397–8.
Raimundo J, Sobral R, Laranjeira S, Costa MMR. Successive domain rearrangements underlie the evolution of a regulatory module controlled by a small interfering peptide. Mol Biol Evol. 2018;35:2873–85.
CAS
PubMed
PubMed Central
Google Scholar
Huchard E, Martinez M, Alout H, Douzery EJP, Lutfalla G, Berthomieu A, et al. Acetylcholinesterase genes within the Diptera: takeover and loss in true flies. Proc R Soc B Biol Sci. 2006;273:2595–604.
CAS
Google Scholar
Li M, Zhang D, Gao Q, Luo Y, Zhang H, Ma B, et al. Genome structure and evolution of Antirrhinum majus L. Nat Plants. 2019;5:174.
CAS
PubMed
PubMed Central
Google Scholar
Sengupta A, Hileman LC. Evolution of novel genetic programs: insights from flower and fruit development. University of Kansas; 2019 (cited 2021 Sep 28). https://kuscholarworks.ku.edu/handle/1808/29628.
Lönnig W-E, Stüber K, Saedler H, H. Kim J. Biodiversity and Dollo’s Law: to what extent can the phenotypic differences between Misopates orontium and Antirrhinum majus be bridged by mutagenesis? Bioremediation Biodivers Bioavailab V1 1–30 2007. 2018;
Broholm SK, Tähtiharju S, Laitinen RAE, Albert VA, Teeri TH, Elomaa P. A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera (Asteraceae) inflorescence. Proc Natl Acad Sci. 2008;105:9117–22.
CAS
PubMed
PubMed Central
Google Scholar
Zhong J, Preston JC, Hileman LC, Kellogg EA. Repeated and diverse losses of corolla bilateral symmetry in the Lamiaceae. Ann Bot. 2017;119:1211.
CAS
PubMed
PubMed Central
Google Scholar
Costa MMR, Fox S, Hanna AI, Baxter C, Coen E. Evolution of regulatory interactions controlling floral asymmetry. Development. 2005;132:5093–101.
CAS
PubMed
Google Scholar
Kosugi S, Ohashi Y. DNA binding and dimerization specificity and potential targets for the TCP protein family. Plant J. 2002;30:337–48.
CAS
PubMed
Google Scholar
Cubas P. Floral zygomorphy, the recurring evolution of a successful trait. BioEssays. 2004;26:1175–84.
CAS
PubMed
Google Scholar
Koyama T, Sato F, Ohme-Takagi M. A role of TCP1 in the longitudinal elongation of leaves in Arabidopsis. Biosci Biotechnol Biochem. 2010;74:2145–7.
CAS
PubMed
Google Scholar
Gao Y, Zhang D, Li J. TCP1 modulates DWF4 expression via directly interacting with the GGNCCC motifs in the promoter region of DWF4 in Arabidopsis thaliana. J Genet Genomics. 2015;42:383–92.
CAS
PubMed
Google Scholar
Hileman LC. Trends in flower symmetry evolution revealed through phylogenetic and developmental genetic advances. Philos Trans R Soc B Biol Sci. 2014;369:20130348.
Google Scholar
Howarth DG, Donoghue MJ. Duplications in CYC -like genes from Dipsacales correlate with floral form. Int J Plant Sci. 2005;166:357–70.
CAS
Google Scholar
Howarth DG, Donoghue MJ. Duplications and expression of DIVARICATA-like genes in Dipsacales. Mol Biol Evol. 2009;26:1245–58.
CAS
PubMed
Google Scholar
Boyden GS, Donoghue MJ, Howarth DG. Duplications and expression of RADIALIS-like genes in Dipsacales. Int J Plant Sci. 2012;173:971–83. https://doi.org/10.1086/667626.
Article
CAS
Google Scholar
Berger BA, Ricigliano VA, Savriama Y, Lim A, Thompson V, Howarth DG. Geometric morphometrics reveals shifts in flower shape symmetry and size following gene knockdown of CYCLOIDEA and ANTHOCYANIDIN SYNTHASE. BMC Plant Biol. 2017;17:205.
PubMed
PubMed Central
Google Scholar
Horn S, Pabón-Mora N, Theuß VS, Busch A, Zachgo S. Analysis of the CYC/TB1 class of TCP transcription factors in basal angiosperms and magnoliids. Plant J. 2015;81:559–71.
CAS
PubMed
Google Scholar
Madrigal Y, Alzate JF, González F, Pabón-Mora N. Evolution of RADIALIS and DIVARICATA gene lineages in flowering plants with an expanded sampling in non-core eudicots. Am J Bot. 2019;106:334–51.
CAS
PubMed
Google Scholar
Madrigal Y, Alzate JF, Pabón-Mora N. Evolution and expression patterns of TCP genes in Asparagales. Front Plant Sci. 2017. https://doi.org/10.3389/fpls.2017.00009.
Article
PubMed
PubMed Central
Google Scholar
Valoroso MC, Sobral R, Saccone G, Salvemini M, Costa MMR, Aceto S. Evolutionary conservation of the orchid MYB transcription factors DIV, RAD, and DRIF. Front Plant Sci. 2019. https://doi.org/10.3389/fpls.2019.01359.
Article
PubMed
PubMed Central
Google Scholar
Cubas P, Coen E, Zapater JMM. Ancient asymmetries in the evolution of flowers. Curr Biol. 2001;11:1050–2.
CAS
PubMed
Google Scholar
Busch A, Horn S, Mühlhausen A, Mummenhoff K, Zachgo S. corolla monosymmetry: evolution of a morphological novelty in the Brassicaceae family. Mol Biol Evol. 2012;29:1241–54.
CAS
PubMed
Google Scholar
Vincent CA, Coen ES. A temporal and morphological framework for flower development in Antirrhinum majus. Can J Bot. 2004;82:681–90.
Google Scholar
Zhao Y, Pfannebecker K, Dommes AB, Hidalgo O, Becker A, Elomaa P. Evolutionary diversification of CYC/TB1-like TCP homologs and their recruitment for the control of branching and floral morphology in Papaveraceae (basal eudicots). New Phytol. 2018;220:317–31.
CAS
PubMed
Google Scholar
Baxter CEL, Costa MMR, Coen ES. Diversification and co-option of RAD-like genes in the evolution of floral asymmetry. Plant J. 2007;52:105–13.
CAS
PubMed
Google Scholar
Valoroso MC, De Paolo S, Iazzetti G, Aceto S. Transcriptome-wide identification and expression analysis of DIVARICATA- and RADIALIS-Like genes of the mediterranean orchid Orchis italica. Genome Biol Evol. 2017;9:1418–31.
Google Scholar
True JR, Carroll SB. Gene co-option in physiological and morphological evolution. Annu Rev Cell Dev Biol. 2002;18:53–80.
CAS
PubMed
Google Scholar
Stern DL. The genetic causes of convergent evolution. Nat Rev Genet. 2013;14:751–64.
CAS
PubMed
Google Scholar
Spitz F, Gonzalez F, Peichel C, Vogt TF, Duboule D, Zákány J. Large scale transgenic and cluster deletion analysis of the HoxD complex separate an ancestral regulatory module from evolutionary innovations. Genes Dev. 2001;15:2209–14.
CAS
PubMed
PubMed Central
Google Scholar
Bharathan G, Goliber TE, Moore C, Kessler S, Pham T, Sinha NR. Homologies in leaf form inferred from KNOXI gene expression during development. Science. 2002;296:1858–60.
CAS
PubMed
Google Scholar
Citerne HL, Luo D, Pennington RT, Coen E, Cronk QCB. A phylogenomic investigation of CYCLOIDEA-Like TCP genes in the Leguminosae. Plant Physiol. 2003;131:1042–53.
CAS
PubMed
PubMed Central
Google Scholar
Busch A, Zachgo S. Control of corolla monosymmetry in the Brassicaceae Iberis amara. Proc Natl Acad Sci U S A. 2007;104:16714–9.
CAS
PubMed
PubMed Central
Google Scholar
Werner T, Koshikawa S, Williams TM, Carroll SB. Generation of a novel wing colour pattern by the Wingless morphogen. Nature. 2010;464:1143–8.
CAS
PubMed
Google Scholar
Sordino P, van der Hoeven F, Duboule D. Hox gene expression in teleost fins and the origin of vertebrate digits. Nature. 1995;375:678–81.
CAS
PubMed
Google Scholar
Brakefield PM, Gates J, Keys D, Kesbeke F, Wijngaarden PJ, Montelro A, et al. Development, plasticity and evolution of butterfly eyespot patterns. Nature. 1996;384:236–42.
CAS
PubMed
Google Scholar
Gillaspy G, Ben-David H, Gruissem W. Fruits: a developmental perspective. Plant Cell. 1993;5:1439–51.
PubMed
PubMed Central
Google Scholar
Brukhin V, Hernould M, Gonzalez N, Chevalier C, Mouras A. Flower development schedule in tomato Lycopersicon esculentum cv. sweet cherry. Sex Plant Reprod. 2003;15:311–20.
Google Scholar
Knapp S. Floral diversity and evolution in Solanaceae. In: Cronk QCB, Bateman RM, Hawkins JA, editors. Dev Genet Plant Evol. Boca Raton: CRC Press; 2004.
Google Scholar
Craene LPRD. Floral diagrams: an aid to understanding flower morphology and evolution. Cambridge: Cambridge University Press; 2010.
Google Scholar
Murray MA. Carpellary and placental structure in the Solanaceae. Bot Gaz. 1945;107:243–60.
Google Scholar
Hake S. Inflorescence architecture: the transition from branches to flowers. Curr Biol. 2008;18:R1106–8.
CAS
PubMed
Google Scholar
Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.
CAS
PubMed
PubMed Central
Google Scholar
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42.
PubMed
PubMed Central
Google Scholar
Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gatew Comput Environ Workshop GCE. 2010. p. 1–8.
Preston JC, Hileman LC. SQUAMOSA-PROMOTER BINDING PROTEIN 1 initiates flowering in Antirrhinum majus through the activation of meristem identity genes. Plant J Cell Mol Biol. 2010;62:704–12.
CAS
Google Scholar
Expósito-Rodríguez M, Borges AA, Borges-Pérez A, Pérez JA. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol. 2008;8:131.
PubMed
PubMed Central
Google Scholar
Peirson SN, Butler JN, Foster RG. Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res. 2003;31:e73–e73.
PubMed
PubMed Central
Google Scholar
Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29:e45.
CAS
PubMed
PubMed Central
Google Scholar
Pfaffl MW. Relative quantification. In: Dorak MT, editor. Real-time PCR. 1st ed. New York: Taylor & Francis; 2007. p. 63–82.
Google Scholar
Dinesh-Kumar SP, Anandalakshmi R, Marathe R, Schiff M, Liu Y. Virus-induced gene silencing. In: Grotewold E, editor. Plant Functional Genomics. 2003 (cited 2014 Nov 22). p. 287–93. https://doi.org/10.1385/1-59259-413-1%3A287
Liu Y, Schiff M, Dinesh-Kumar SP. Virus-induced gene silencing in tomato. Plant J. 2002;31:777–86.
CAS
PubMed
Google Scholar
Padmanabhan M, Dinesh-Kumar SP. Virus-induced gene silencing as a tool for delivery of dsRNA into plants. Cold Spring Harb Protoc. 2009; 2009:pdb.prot5139.
Refulio-Rodriguez NF, Olmstead RG. Phylogeny of Lamiidae. Am J Bot. 2014;101:287–99.
PubMed
Google Scholar
Maddison WP, Maddison DR. Mesquite: a modular system for evolutionary analysis. 2018. http://www.mesquiteproject.org.
Fasoli M, Dal Santo S, Zenoni S, Tornielli GB, Farina L, Zamboni A, et al. The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. Plant Cell. 2012;24:3489–505.
CAS
PubMed
PubMed Central
Google Scholar
Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, Sharma P, et al. F-Box Proteins in Rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol. 2007;143:1467–83.
CAS
PubMed
PubMed Central
Google Scholar
Sengupta A, Hileman LC. Novel traits, flower symmetry, and transcriptional autoregulation: new hypotheses from bioinformatic and experimental data. Front Plant Sci. 2018;9:1561.
PubMed
PubMed Central
Google Scholar
Ogutcen E, Vamosi JC. A phylogenetic study of the tribe Antirrhineae: genome duplications and long-distance dispersals from the Old World to the New World. Am J Bot. 2016;103:1071–81.
CAS
PubMed
Google Scholar