Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM. LEAFY controls floral meristem identity in Arabidopsis. Cell. 1992;69:843–59.
Article
CAS
PubMed
Google Scholar
Blazquez MA, Soowal LN, Lee I, Weigel D. LEAFY expression and flower initiation in Arabidopsis. Development. 1997;124:3835–44.
Article
CAS
PubMed
Google Scholar
Hempel FD, Weigel D, Mandel MA, Ditta G, Zambryski PC, Feldman LJ, et al. Floral determination and expression of floral regulatory genes in Arabidopsis. Development. 1997;124:3845–53.
Article
CAS
PubMed
Google Scholar
Siriwardana NS, Lamb RS. The poetry of reproduction: the role of LEAFY in Arabidopsis thaliana flower formation. Int J Dev Biol. 2012;56:207–21.
Article
CAS
PubMed
Google Scholar
Sayou C, Monniaux M, Nanao MH, Moyroud E, Brockington SF, Thévenon E, et al. A promiscuous intermediate underlies the evolution of LEAFY DNA binding specificity. Science. 2014;343:645–8.
Article
CAS
PubMed
Google Scholar
Gao B, Chen M, Li X, Zhang J. Ancient duplications and grass-specific transposition influenced the evolution of LEAFY transcription factor genes. Commun Biol. 2019;2(1):10.
Article
Google Scholar
Himi S, Sano R, Nishiyama T, Tanahashi T, Kato M, Ueda K, et al. Evolution of MADS-box gene induction by FLO/LFY genes. J Mol Evol. 2001;53:387–93.
Article
CAS
PubMed
Google Scholar
Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 2020;48:D265–8.
Article
CAS
PubMed
Google Scholar
Sayou C, Nanao MH, Jamin M, Posé D, Thévenon E, Grégoire L, et al. A SAM oligomerization domain shapes the genomic binding landscape of the LEAFY transcription factor. Nat Commun. 2016;7:11222.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carpenter R, Coen ES. Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. Genes Dev. 1990;4:1483–93.
Article
CAS
PubMed
Google Scholar
Coen ES, Romero J, Doyle S, Elliott R, Murphy G, Carpenter R. floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell. 1990;63:1311–22.
Article
CAS
PubMed
Google Scholar
Schultz EA, Haughn GW. LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. Plant Cell. 1991;3:771–81.
Article
PubMed
PubMed Central
Google Scholar
Moyroud E, Kusters E, Monniaux M, Koes R, Parcy F. LEAFY blossoms. Trends Plant Sci. 2010;15:346–52.
Article
CAS
PubMed
Google Scholar
Parcy F, Nilsson O, Busch MA, Lee I, Weigel D. A genetic framework for floral patterning. Nature. 1998;395:561–6.
Article
CAS
PubMed
Google Scholar
Lee J, Oh M, Park H, Lee I. SOC1 translocated to the nucleus by interaction with AGL24 directly regulates LEAFY. Plant J. 2008;55:832–43.
Article
CAS
PubMed
Google Scholar
Liu C, Xi W, Shen L, Tan C, Yu H. Regulation of floral patterning by flowering time genes. Dev cell. 2009;16:711–22.
Article
CAS
PubMed
Google Scholar
Gregis V, Andrés F, Sessa A, Guerra RF, Simonini S, Mateos JL, et al. Identification of pathways directly regulated by SHORT VEGETATIVE PHASE during vegetative and reproductive development in Arabidopsis. Genome Biol. 2013;14:R56.
Article
PubMed
PubMed Central
Google Scholar
Kaufmann K, Wellmer F, Muiño JM, Ferrier T, Wuest SE, Kumar V, et al. Orchestration of Floral Initiation by APETALA1. Science. 2010;328:85–9.
Article
CAS
PubMed
Google Scholar
Moyroud E, Minguet EG, Ott F, Yant L, Posé D, Monniaux M, et al. Prediction of regulatory interactions from genome sequences using a biophysical model for the Arabidopsis LEAFY transcription factor. Plant Cell. 2011;23:1293–306.
Article
CAS
PubMed
PubMed Central
Google Scholar
Winter CM, Austin RS, Blanvillain-Baufumé S, Reback MA, Monniaux M, Wu M-F, et al. LEAFY target genes reveal floral regulatory logic, cis motifs, and a link to biotic stimulus response. Dev cell. 2011;20:430–43.
Article
CAS
PubMed
Google Scholar
Han Y, Zhang C, Yang H, Jiao Y. Cytokinin pathway mediates APETALA1 function in the establishment of determinate floral meristems in Arabidopsis. Proc Natl Acad Sci USA. 2014;111:6840–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Winter CM, Yamaguchi N, Wu M-F, Wagner D. Transcriptional programs regulated by both LEAFY and APETALA1 at the time of flower formation. Physiol Plant. 2015;155:55–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
William DA, Su Y, Smith MR, Lu M, Baldwin DA, Wagner D. Genomic identification of direct target genes of LEAFY. Proc Natl Acad Sci USA. 2004;101:1775–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Southerton SG, Strauss SH, Olive MR, Harcourt RL, Decroocq V, Zhu X, et al. Eucalyptus has a functional equivalent of the Arabidopsis floral meristem identity gene LEAFY. Plant Mol Biol. 1998;37:897–910.
Article
CAS
PubMed
Google Scholar
Wada M, Cao Q, Kotoda N, Soejima J, Masuda T. Apple has two orthologues of FLORICAULA/LEAFY involved in flowering. Plant Mol Biol. 2002;49:567–77.
Article
CAS
PubMed
Google Scholar
Yu Q, Moore PH, Albert HH, Roader AHK, Ming R. Cloning and characterization of a FLORICAULA/LEAFY ortholog, PFL, in polygamous papaya. Cell Res. 2005;15:576–84.
Article
CAS
PubMed
Google Scholar
Hofer J, Turner L, Hellens R, Ambrose M, Matthews P, Michael A, et al. UNIFOLIATA regulates leaf and flower morphogenesis in pea. Curr Biol. 1997;7:581–7.
Article
CAS
PubMed
Google Scholar
Wang H, Chen J, Wen J, Tadege M, Li G, Liu Y, et al. Control of compound leaf development by FLORICAULA/LEAFY ortholog SINGLE LEAFLET1 in Medicago truncatula. Plant Physiol. 2008;146:1759–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao W, Chen Z, Liu X, Che G, Gu R, Zhao J, Wang Z, Hou Y, Zhang X. CsLFY is required for shoot meristem maintenance via interaction with WUSCHEL in cucumber (Cucumis sativus). New Phyt. 2017;218:344–56.
Article
Google Scholar
Pouteau S, Nicholls D, Tooke F, Coen E, Battey N. The induction and maintenance of flowering in Impatiens. Development. 1997;124:3343–51.
Article
CAS
PubMed
Google Scholar
Molinero-Rosales N, Jamilena M, Zurita S, Gómez P, Capel J, Lozano R. FALSIFLORA, the tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem identity. Plant J. 1999;20:685–93.
Article
CAS
PubMed
Google Scholar
Ahearn KP, Johnson HA, Weigel D, Wagner DR. NFL1, a Nicotiana tabacum LEAFY-like gene, controls meristem initiation and floral structure. Plant Cell Physiol. 2001;42:1130–9.
Article
CAS
PubMed
Google Scholar
Rao NN, Prasad K, Kumar PR, Vijayraghavan U. Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture. Proc Natl Acad Sci USA. 2008;105:3646–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharma B, Meaders C, Wolfe D, Holappa L, Walcher-Chevillet C, Kramer EM. Homologs of LEAFY and UNUSUAL FLORAL ORGANS promote the transition from inflorescence to floral meristem identity in the Cymose Aquilegia coerulea. Front Plant Sci. 2019. https://doi.org/10.3389/fpls.2019.01218/full. Accessed 6 Nov 2020.
Mellerowicz EJ, Horgan K, Walden A, Coker A, Walter C. PRFLL–a Pinus radiata homologue of FLORICAULA and LEAFY is expressed in buds containing vegetative shoot and undifferentiated male cone primordia. Planta. 1998;206:619–29.
Article
CAS
PubMed
Google Scholar
Shindo S, Sakakibara K, Sano R, Ueda K, Hasebe M. Characterization of a FLORICAULA/LEAFY homologue of Gnetum parvifolium and its implications for the evolution of reproductive organs in seed plants. Int J Plant Sci. 2001;162:1199–209.
Article
CAS
Google Scholar
Moyroud E, Monniaux M, Thévenon E, Dumas R, Scutt CP, Frolich M, Parcy F. A link between LEAFY and B-gene homologues in Welwitschia mirabilis sheds light on ancestral mechanisms prefiguring floral development. New Phytol. 2007;216:469–81.
Article
Google Scholar
Vázquez-Lobo A, Carlsbecker A, Vergara-Silva F, Alvarez-Buylla ER, Piñero D, Engström P. Characterization of the expression patterns of LEAFY/FLORICAULA and NEEDLY orthologs in female and male cones of the conifer genera Picea, Podocarpus, and Taxus: implications for current evo-devo hypotheses for gymnosperms. Evol Dev. 2007;9:446–59.
Article
PubMed
Google Scholar
Plackett AR, Conway SJ, Hewett Hazelton KD, Rabbinowitsch EH, Langdale JA, Di Stilio VS. LEAFY maintains apical stem cell activity during shoot development in the fern Ceratopteris richardii. Elife. 2018;7: e39625.
Article
PubMed
PubMed Central
Google Scholar
Maizel A, Busch MA, Tanahashi T, Perkovic J, Kato M, Hasebe M, et al. The floral regulator LEAFY evolves by substitutions in the DNA binding domain. Science. 2005;308:260–3.
Article
CAS
PubMed
Google Scholar
Yang T, Du M, Guo Y, Liu X. Two LEAFY homologs ILFY1 and ILFY2 control reproductive and vegetative developments in Isoetes L. Sci Rep. 2017;7:225.
Article
PubMed
PubMed Central
Google Scholar
Tanahashi T, Sumikawa N, Kato M, Hasebe M. Diversification of gene function: homologs of the floral regulator FLO/LFY control the first zygotic cell division in the moss Physcomitrella patens. Development. 2005;132:1727–36.
Article
CAS
PubMed
Google Scholar
PPGI. A community-derived classification for extant lycophytes and ferns. J Syst Evol. 2016;54:563–603.
Article
Google Scholar
Ambrose BA, Smalls TL, Zumajo-Cardona C. All type II classic MADS-box genes in the lycophyte Selaginella moellendorffii are broadly yet discretely expressed in vegetative and reproductive tissues. Evol Dev. 2021;23:215–30.
Article
CAS
PubMed
Google Scholar
Mouradov A, Glassick T, Hamdorf B, Murphy L, Fowler B, Marla S, et al. NEEDLY, a Pinus radiata ortholog of FLORICAULA/LEAFY genes, expressed in both reproductive and vegetative meristems. Proc Natl Acad Sci USA. 1998;95:6537–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frohlich MW, Parker DS. the mostly male theory of flower evolutionary origins: from genes to fossils. Syst Bot. 2000;25:155–70.
Article
Google Scholar
Nilsson O, Weigel D. Modulating the timing of flowering. Curr Opin Biotechnol. 1997;8:195–9.
Article
CAS
PubMed
Google Scholar
Brunkard JO, Runkel AM, Zambryski PC. Comment on “A promiscuous intermediate underlies the evolution of LEAFY DNA binding specificity.” Science. 2015;347:621–621.
Article
CAS
PubMed
Google Scholar
Huang C-H, Qi X, Chen D, Qi J, Ma H. Recurrent genome duplication events likely contributed to both the ancient and recent rise of ferns. J Integr Plant Biol. 2019;62:433–55.
Article
PubMed
Google Scholar
Shiokawa T, Yamada S, Futamura N, Osanai K, Murasugi D, Shinohara K, et al. Isolation and functional analysis of the CjNdly gene, a homolog in Cryptomeria japonica of FLORICAULA/LEAFY genes. Tree Physiol. 2008;28:21–8.
Article
CAS
PubMed
Google Scholar
Silva CS, Puranik S, Round A, Brennich M, Jourdain A, Parcy F, et al. Evolution of the plant reproduction master regulators LFY and the MADS transcription factors: the role of protein structure in the evolutionary development of the flower. Front Plant Sci. 2016;6. https://doi.org/10.3389/fpls.2015.01193/full. Accessed 29 Dec 2020.
Münster T, Pahnke J, Rosa AD, Kim JT, Martin W, Saedler H, et al. Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proc Natl Acad Sci USA. 1997;94:2415–20.
Article
PubMed
PubMed Central
Google Scholar
Svensson ME, Johannesson H, Engström P. The LAMB1 gene from the clubmoss, Lycopodium annotinum, is a divergent MADS-box gene, expressed specifically in sporogenic structures. Gene. 2000;253:31–43.
Article
CAS
PubMed
Google Scholar
Tanabe Y, Uchida M, Hasebe M, Ito M. Characterization of the Selaginella remotifolia MADS-box gene. J Plant Res. 2003;116:69–73.
Article
Google Scholar
Huang Q, Li W, Fan R, Chang Y. New MADS-box gene in fern: cloning and expression analysis of DfMADS1 from Dryopteris fragrans. PLoS ONE. 2014;9: e86349.
Article
PubMed
PubMed Central
Google Scholar
Ruiz-Estévez M, Bakkali M, Martín-Blázquez R, Garrido-Ramos MA. Differential expression patterns of MIKCC-type MADS-box genes in the endangered fern Vandenboschia speciosa. Plant Gene. 2017;12:50–6.
Article
Google Scholar
Wang Y-Q, Melzer R, Theißen G. Molecular interactions of orthologues of floral homeotic proteins from the gymnosperm Gnetum gnemon provide a clue to the evolutionary origin of ‘floral quartets.’ Plant J. 2010;64:177–90.
Article
CAS
PubMed
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML web servers. Syst Biol. 2008;57:758–71.
Article
PubMed
Google Scholar
Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES science gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE), 2010: 1–8.
Rambaut A. FigTree v.1.4.4: Tree Figure Drawing Tool. 2018. http://tree.bio.ed.ac.uk/software/figtree/. Accessed 29 Dec 2021.
Bailey TL, Williams N, Misleh C, Li WW. MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 2006;34:W369–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brouwer P, Bräutigam A, Külahoglu C, Tazelaar AOE, Kurz S, Nierop KGJ, et al. Azolla domestication towards a biobased economy? New Phytol. 2014;202:1069–82.
Article
CAS
PubMed
Google Scholar
Kraus JE, de Sousa HC, Rezende MH, Castro NM, Vecchi C, Luque R. Astra blue and basic fuchsin double staining of plant materials. Biotech Histochem. 1998;73:235–43.
Article
CAS
PubMed
Google Scholar
Lyon FM. A study of the sporangia and gametophytes of Selaginella apus and Selaginella rupestris. Bot gaz. 1901;32:124–41.
Article
Google Scholar
Schulz C, Little DP, Stevenson DW, Bauer D, Moloney C, Stützel T. An overview of the morphology, anatomy, and life cycle of a new model species: the lycophyte Selaginella apoda (L.) spring. Int J Plant Sci. 2010;171:693–712.
Article
Google Scholar
Ambrose BA, Lerner DR, Ciceri P, Padilla CM, Yanofsky MF, Schmidt RJ. Molecular and genetic analyses of the Silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol Cell. 2000;5:569–79.
Article
CAS
PubMed
Google Scholar
Vasco A, Ambrose BA. Simple and divided leaves in ferns: exploring the genetic basis for leaf morphology differences in the genus Elaphoglossum (Dryopteridaceae). Int J Pl Sci. 2020;21:5180.
CAS
Google Scholar