Edwards D, Morris JL, Axe L, Duckett JG, Pressel S, Kenrick P. Piecing together the eophytes—a new group of ancient plants containing cryptospores. New Phytol. 2021. https://doi.org/10.1111/nph.17703.
Article
PubMed
Google Scholar
Mishler BD, Churchill SP. Transition to a land flora: phylogenetic relationships of the green algae and bryophytes. Cladistics. 1985;1:305–28.
PubMed
Google Scholar
Rothwell GW, Wyatt SE, Tomescu AMF. Plant evolution at the interface of paleontology and developmental biology: an organism-centered paradigm. Am J Bot. 2014;101:899–913.
PubMed
Google Scholar
Tomescu AMF, Wyatt SE, Hasebe M, Rothwell GW. Early evolution of the vascular plant body plan—the missing mechanisms. Curr Opin Plant Biol. 2014;17:126–36.
PubMed
Google Scholar
Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K, Yamaoka S, Nishihama R, Nakamura Y, Berger F, et al. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell. 2017;171:287–304.
CAS
PubMed
Google Scholar
Bowles AMC, Bechtold U, Paps J. The origin of land plants is rooted in two bursts of genomic novelty. Curr Biol. 2020;30:530–6.
CAS
PubMed
Google Scholar
Eldredge N, Gould SJ. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology. 1977;3:115–51.
Google Scholar
Valentine JW, Campbell CA. Genetic regulation and the fossil record. Am Sci. 1975;63:673–80.
CAS
PubMed
Google Scholar
Douglas EH, Valentine JW. The Cambrian explosion: the construction of animal biodiversity. Greenwood Village: Roberts & Co; 2013.
Google Scholar
Bateman RM. Integrating molecular and morphological evidence of evolutionary radiations. In: Hollingsworth PM, Bateman RM, Gornall RJ, editors. Molecular systematics and plant evolution. London: Taylor & Francis; 1999. p. 432–71.
Google Scholar
DiMichele WA, Phillips TL, Olmstead RG. Opportunistic evolution: abiotic environmental stress and the fossil record of plants. Rev Palaeobot Palynol. 1987;50:151–87.
Google Scholar
DiMichele WA, Phillips TL. Climate change, plant extinctions and vegetational recovery during the Middle-Late Pennsylvanian transition: the case of tropical peat-forming environments in North America. In: Hart MB, editor. Biotic recovery from mass extinction events. Boulder: Geological Society of America; 1996. p. 201–21.
Google Scholar
Rothwell GW. The role of development in plant phylogeny: a paleobotanical perspective. Rev Palaeobot Palynol. 1987;50:97–114.
Google Scholar
Cubo J. Pattern and process in constructional morphology. Evol Dev. 2020;6:131–3.
Google Scholar
Sansom R. The nature of constraints. In: Laubichler MD, Maienschein J, editors. Form and function in developmental evolution. Cambridge: Cambridge University Press; 2009. p. 201–12.
Google Scholar
Olson ME. The developmental renaissance in adaptationism. Trends Ecol Evol. 2012;27:278–87.
PubMed
Google Scholar
Olson ME, Arroyo-Santos A, Vergara-Silva F. A user’s guide to metaphors in ecology and evolution. Trends Ecol Evol. 2019;34:605–15.
PubMed
Google Scholar
Langdale JA, Harrison CJ. Developmental transitions during the evolution of plant form. In: Minelli A, Fusco G, editors. Evolving pathways. Key themes in evolutionary developmental biology. Cambridge: Cambridge University Press; 2008. p. 299–315.
Google Scholar
Cronk QCB. The molecular organography of plants. Oxford: Oxford University Press; 2009.
Google Scholar
Gould SJ. Ontogeny and phylogeny. Belknap: Cambridge; 1977.
Google Scholar
Kenrick P, Crane PR. The origin and early diversification of plants on land: a cladistics study. Washington: Smithsonian Institution Press; 1997.
Google Scholar
Okano Y, Aonoa N, Hiwatashi Y, Murata T, Nishiyama T, lshikawa T, Kubo M, Hasebe M. A polycomb repressive complex 2 gene regulates apogamy and gives evolutionary insights into early land plant evolution. Proc Natl Acad Sci USA. 2009;106:16321–6.
CAS
PubMed
PubMed Central
Google Scholar
Boyce CK. How green was Cooksonia? The importance of size in understanding the early evolution of physiology in the vascular plant lineage. Paleobiology. 2008;34:179–94.
Google Scholar
Edwards D, Morris JL, Axe L, Taylor WA, Duckett JG, Kenrick P, Pressel S. Earliest record of transfer cells in Lower Devonian plants. New Phytol. 2021. https://doi.org/10.1111/nph.17704.
Article
PubMed
Google Scholar
Pavlicev M, Wagner GP. Evolutionary systems biology: shifting focus to the context-dependency of genetic effects. In: Martin LB, Ghalambor CK, Woods HA, editors. Integrative organismal biology. Hoboken: Wiley; 2015. p. 91–108.
Google Scholar
Klingenberg CP. Morphological integration and developmental modularity. Annu Rev Ecol Evol Syst. 2008;39:115–32.
Google Scholar
Lev-Yadun S. Experimental evidence for the autonomy of ray differentiation in Ficus sycomorus L. New Phytol. 1994;126:499–504.
PubMed
Google Scholar
Bolker JA. Modularity in development and why it matters to evo-devo. Amer Zool. 2000;40:770–6.
Google Scholar
Wu P, Yan J, Lai Y-C, Ng CS, Li A, Jiang X, Elsey RM, Widelitz R, Bajpai R, Li W-H, Chuong C-M. Multiple regulatory modules are required for scale-to-feather conversion. Mol Biol Evol. 2018;35:417–30.
CAS
PubMed
Google Scholar
Etchells JP, Provost CM, Mishra LS, Turner SR. WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation. Development. 2013;140:2224–34.
CAS
PubMed
PubMed Central
Google Scholar
Fisher K, Turner S. PXY, a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development. Curr Biol. 2007;17:1061–6.
CAS
PubMed
Google Scholar
Bossinger G, Spokevicius AV. Sector analysis reveals patterns of cambium differentiation in poplar stems. J Exp Bot. 2018;68:4339–48.
Google Scholar
Du F, Mo Y, Israeli A, Wang Q, Yifhar T, Ori N, Jiao Y. Leaflet initiation and blade expansion are separable in compound leaf development. Plant J. 2020;104:1073–87.
CAS
PubMed
Google Scholar
Bissell EK, Diggle PK. Modular genetic architecture of floral morphology in Nicotiana: quantitative genetic and comparative phenotypic approaches to floral integration. J Evol Biol. 2010;23:1744–58.
CAS
PubMed
Google Scholar
Friedman WE, Madrid EN, Williams JH. Origin of the fittest and survival of the fittest: relating female gametophyte development to endosperm genetics. Int J Plant Sci. 2008;169:79–92.
Google Scholar
Zhu Q, Shao Y, Ge S, Zhang M, Zhang T, Hu X, Liu Y, Walker J, Zhang S, Xu J. A MAPK cascade downstream of IDA-HAE/HSL2 ligand-receptor pair in lateral root emergence. Nat Plants. 2019;5:414–23.
CAS
PubMed
Google Scholar
Xiao W, Molina D, Wunderling A, Ripper D, Vermeer JEM, Ragni L. Pluripotent pericycle cells trigger different growth outputs by integrating developmental cues into distinct regulatory modules. Curr Biol. 2020;30:4384–98.
CAS
PubMed
Google Scholar
Menand B, Yi K, Jouannic S, Hoffmann L, Ryan E, Linstead P, Schaefer DG, Dolan L. An ancient mechanism controls the development of cells with a rooting function in land plants. Science. 2007;316:1477–80.
CAS
PubMed
Google Scholar
Frank MH, Scanlon MJ. Transcriptomic evidence for the evolution of shoot meristem function in sporophyte-dominant land plants through concerted selection of ancestral gametophytic and sporophytic genetic programs. Mol Biol Evol. 2015;32:355–67.
CAS
PubMed
Google Scholar
Whitewoods CD, Cammarata J, Nemec Venza Z, Sang S, Crook AD, Aoyama T, Wang XY, Waller M, Kamisugi Y, Cuming AC, Szovenyi P, Nimchuk ZL, Roeder AHK, Scanlon MJ, Harrison CJ. CLAVATA was a genetic novelty for the morphological innovation of 3D growth in land plants. Curr Biol. 2018;28:2365–76.
CAS
PubMed
PubMed Central
Google Scholar
Hirakawa Y, Uchida N, Yamaguchi YL, Tabata R, Ishida S, Ishizaki K, Nishihama R, Kohchi T, Sawa S, Bowman JL. Control of proliferation in the haploid meristem by CLE peptide signaling in Marchantia polymorpha. PLoS Genet. 2019;15: e1007997.
CAS
PubMed
PubMed Central
Google Scholar
Cammarata J, Morales Farfan C, Scanlon MJ, Roeder AHK. Cytokinin-CLAVATA crosstalk is an ancient mechanism regulating shoot meristem homeostasis in land plants. bioRxiv. 2021. https://doi.org/10.1101/2021.08.03.454935.
Article
Google Scholar
Bonacorsi NK, Leslie AB. Sporangium position, branching architecture, and the evolution of reproductive morphology in Devonian plants. Int J Plant Sci. 2019;180:493–503.
Google Scholar
Crepet WL, Niklas KJ. The evolution of early vascular plant complexity. Int J Plant Sci. 2019;180:800–10.
Google Scholar
Tomescu AMF, Groover AT. Mosaic modularity: an updated perspective and research agenda for the evolution of vascular cambial growth. New Phytol. 2019;222:1719–35.
PubMed
Google Scholar
Rothwell GW, Lev-Yadun S. Evidence of polar auxin flow in 375 million-year-old fossil wood. Am J Bot. 2005;92:903–6.
CAS
PubMed
Google Scholar
Tomescu AMF, Escapa IH, Rothwell GW, Elgorriaga A, Cúneo NR. Developmental programmes in the evolution of Equisetum reproductive morphology: a hierarchical modularity hypothesis. Ann Bot. 2017;119:489–505.
PubMed
PubMed Central
Google Scholar
Sachs T, Cohen D. Circular vessels and the control of vascular differentiation in plants. Differentiation. 1982;21:22–6.
Google Scholar
Cooke TJ, Poli DB, Sztein AE, Cohen JD. Evolutionary patterns in auxin action. Plant Mol Biol. 2002;49:319–38.
CAS
PubMed
Google Scholar
Dengler NG. Regulation of vascular development. J Plant Growth Regul. 2001;20:1–13.
CAS
Google Scholar
Agusti J, Lichtenberger R, Schwarz M, Nehlin L, Greb T. Characterization of transcriptome remodeling during cambium formation identifies MOL1 and RUL1 as opposing regulators of secondary growth. PLoS Genet. 2011;7: e1001312.
CAS
PubMed
PubMed Central
Google Scholar
Růžička K, Ursache R, Hejátko J, Helariutta Y. Xylem development - from the cradle to the grave. New Phytol. 2015;207:519–35.
PubMed
Google Scholar
Fàbregas N, Formosa-Jordan P, Confraria A, Siligato R, Alonso JM, Swarup R, Bennett MJ, Mähönen AP, Caño-Delgado AI, Ibañes M. Auxin influx carriers control vascular patterning and xylem differentiation in Arabidopsis thaliana. PLoS Genet. 2015;11: e1005183.
PubMed
PubMed Central
Google Scholar
Lavania D, Nguyen ML, Scapella E. Of cells, strands, and networks: auxin and the patterned formation of the vascular system. Cold Spring Harb Perspect Biol. 2021. https://doi.org/10.1101/cshperspect.a039958.
Article
PubMed
Google Scholar
Hejnowicz Z, Kurczyńska EU. Occurrence of circular vessels above axillary buds in stems of woody plants. Acta Soc Bot Pol. 1987;56:415–9.
Google Scholar
Lev-Yadun S, Aloni R. Vascular differentiation in branch junctions of trees: circular patterns and functional significance. Trees. 1990;4:49–54.
Google Scholar
Rothwell GW, Sanders H, Wyatt SE, Lev-Yadun S. A fossil record for growth regulation: the role of auxin in wood evolution. Ann Missouri Bot Gard. 2008;95:121–34.
Google Scholar
Hoffman LA, Tomescu AMF. An early origin of secondary growth: Franhueberia gerriennei gen. et sp. nov. from the Lower Devonian of Gaspé (Quebec, Canada). Am J Bot. 2013;100:754–63.
PubMed
Google Scholar
Rothwell GW, Erwin DM. The rhizomorph apex of Paurodendron: implications for homologies among the rooting organs of Lycopsida. Am J Bot. 1985;72:86–98.
Google Scholar
Sanders H, Rothwell GW, Wyatt SE. Parallel evolution of auxin regulation in rooting systems. Plant Syst Evol. 2011;291:221–5.
CAS
Google Scholar
Rothwell GW, Tomescu AMF. Structural fingerprints of development at the intersection of evolutionary developmental biology and the fossil record. In: Nuno de la Rosa L, Müller G, editors. Evolutionary developmental biology—a reference guide. Basel: Springer; 2018. p. 573–602.
Google Scholar
Tomescu AMF, Matsunaga KKS. Polar auxin transport and plant sporophyte body plans. In: Tomescu AMF, editor. Reference module in life sciences. Evolutionary developmental biology—a reference guide. Basel: Springer; 2019. https://doi.org/10.1016/B978-0-12-809633-8.20905-9.
Chapter
Google Scholar
Salamon MA, Gerrienne P, Steemans P, Gorzelak P, Filipiak P, Le Hérissé A, Paris F, Cascales-Miñana B, Brachaniec T, Misz-Kennan M, Niedźwiedzki R, Trela W. Putative late Ordovician land plants. New Phytol. 2018;218:1305–9.
PubMed
Google Scholar
Rubinstein CV, Gerrienne P, de la Puente GS, Artini RA, Steemans P. Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana). New Phytol. 2010;188:365–9.
CAS
PubMed
Google Scholar
Steemans P, Le Hérissé A, Melvin J, Miller MA, Paris F, Verniers J, Wellman CH. Origin and radiation of the earliest vascular land plants. Science. 2009;324:353.
CAS
PubMed
Google Scholar
Wellman CH, Strother PK. The terrestrial biota prior to the origin of land plants (embryophytes): a review of the evidence. Palaeontology. 2015;58: 601627.
Google Scholar
Rubinstein CV, Vajda V. Baltica cradle of early land plants? Oldest record of trilete spores and diverse cryptospore assemblages; evidence from Ordovician successions of Sweden. Geol fören Stockh förh. 2019;2019(141):181–90.
Google Scholar
Edwards D, Davies ECW. Oldest recorded in situ tracheids. Nature. 1976;263:494–5.
Google Scholar
Libertín M, Kvaček J, Bek J, Žárský V, Štorch P. Sporophytes of polysporangiate land plants from the early Silurian period may have been photosynthetically autonomous. Nat Plants. 2018;4:269–71.
PubMed
Google Scholar
Taylor TN, Kerp H, Hass H. Life history biology of early land plants: deciphering the gametophyte phase. Proc Natl Acad Sci USA. 2005;102:5892–7.
CAS
PubMed
PubMed Central
Google Scholar
Edwards D. A Late Silurian flora from the lower Old Red Sandstone of South-West Dyfed. Palaeontology. 1979;22:23–52.
Google Scholar
Strother PK. Thalloid carbonaceous incrustations and the asynchronous evolution of embryophyte characters during the Early Paleozoic. Int J Coal Geol. 2010;83:154–61.
CAS
Google Scholar
Tomescu AMF, Rothwell GW. Wetlands before tracheophytes: thalloid terrestrial communities of the Early Silurian Passage Creek biota (Virginia). Geol Soc Am Spec Pub. 2006;399:41–56.
Google Scholar
Tomescu AMF, Pratt LM, Rothwell GW, Strother PK, Nadon GC. Carbon isotopes support the presence of extensive land floras pre-dating the origin of vascular plants. Palaeogeogr Palaeoclimatol Palaeoecol. 2009;283:46–59.
Google Scholar
Tomescu AMF, Tate RW, Mack NG, Calder VJ. Simulating fossilization to resolve the taxonomic affinities of thalloid fossils in Early Silurian (ca 425 Ma) terrestrial assemblages. In: Nash TH, Geiser L, McCune B, Triebel D, Tomescu AMF, Sanders WB, editors. Biology of lichens—symbiosis, ecology, environmental monitoring, systematics and cyber applications. Stuttgart: J Cramer/Borntraeger; 2010.
Google Scholar
Tomescu AMF. The sporophytes of seed-free vascular plants—major vegetative developmental features and molecular genetic pathways. In: Fernandez H, Kumar A, Revilla MA, editors. Working with ferns—issues and applications. New York: Springer; 2011. p. 67–94.
Google Scholar
Schneider H, Pryer KM, Cranfill R, Smith AR, Wolf PG. Evolution of vascular plant body plans: a phylogenetic perspective. In: Cronk QCB, Bateman RM, Hawkins JA, editors. Developmental genetics and plant evolution. London: Taylor & Francis; 2002. p. 330–64.
Google Scholar
Rothwell GW. Fossils and ferns in the resolution of land plant phylogeny. Bot Rev. 1999;65:188–217.
Google Scholar
Sanders H, Rothwell GW, Wyatt SE. Key morphological alterations in the evolution of leaves. Int J Plant Sci. 2009;170:860–8.
Google Scholar
Boyce CK, Knoll AH. Evolution of developmental potential and the multiple independent origins of leaves in Paleozoic vascular plants. Paleobiology. 2002;28:70–100.
Google Scholar
Tomescu AMF. Megaphylls, microphylls and the evolution of leaf development. Trends Plant Sci. 2009;14:5–12.
CAS
PubMed
Google Scholar
Boyce CK. Patterns of segregation and convergence in the evolution of fern and seed plant leaf morphologies. Paleobiology. 2005;31:117–40.
Google Scholar
Sanders H, Rothwell GW, Wyatt SE. Paleontological context for the developmental mechanisms of evolution. Int J Plant Sci. 2007;168:719–28.
CAS
Google Scholar
Harrison CJ, Morris JL. The origin and early evolution of vascular plant shoots and leaves. Phil Trans R Soc B. 2017;373:20160496.
PubMed Central
Google Scholar
Maugarny-Calès A, Laufs P. Getting leaves into shape: a molecular, cellular, environmental and evolutionary view. Development. 2018;145:dev161646.
PubMed
Google Scholar
Plackett ARG, Conway SJ, Hewett Hazelton KD, Rabbinowitsch EH, Langdale JA, Di Stilio VS. LEAFY maintains apical stem cell activity during shoot development in the fern Ceratopteris richardii. Elife. 2018;7: e39625.
PubMed
PubMed Central
Google Scholar
Cruz R, Melo-de-Pinna GFA, Vasco A, Prado J, Ambrose BA. Class I KNOX is related to determinacy during the leaf development of the fern Mickelia scandens (Dryopteridaceae). Int J Mol Sci. 2020;21:4295.
CAS
PubMed Central
Google Scholar
Floyd SK, Bowman JL. Distinct developmental mechanisms reflect the independent origins of leaves in vascular plants. Curr Biol. 2006;16:1911–7.
CAS
PubMed
Google Scholar
Vasco A, Smalls TL, Graham SW, Cooper ED, Wong GK-S, Stevenson DW, Moran RC, Ambrose BA. Challenging the paradigms of leaf evolution: class III HD-Zips in ferns and lycophytes. New Phytol. 2016;212:745–58.
CAS
PubMed
Google Scholar
Zumajo-Cardona C, Vasco A, Ambrose BA. The evolution of the KANADI gene family and leaf development in lycophytes and ferns. Plants. 2019;8:313.
CAS
PubMed Central
Google Scholar
Cichan MA, Taylor TN. Evolution of cambium in geologic time—a reappraisal. In: Iqbal M, editor. The vascular cambium. New York: Wiley; 1990. p. 213–28.
Google Scholar
Cichan MA. Vascular cambium and wood development in Carboniferous plants. II. Sphenophyllum plurifoliatum Williamson and Scott (Sphenophyllales). Bot Gaz. 1985;146:395–403.
Google Scholar
D’Antonio MP, Boyce CK. Secondary phloem in arborescent lycopsids. New Phytol. 2021;232:967–72.
PubMed
Google Scholar
Gerrienne P, Gensel PG, Strullu-Derrien C, Lardeux H, Steemans P, Prestianni C. A simple type of wood in two Early Devonian plants. Nature. 2011;333:837.
CAS
Google Scholar
Strullu-Derrien C, Kenrick P, Tafforeau P, Cochard H, Bonnemain J-L, Le Hérissé A, Lardeux H, Badel E. The earliest fossil wood and its hydraulic properties documented in c. 407-million-year-old fossils using synchrotron microtomography. Bot J Linn Soc. 2014;175:423–37.
Google Scholar
Gensel PG. Early Devonian woody plants and implications for the early evolution of vascular cambia. In: Krings M, Harper CJ, Cúneo NR, Rothwell GW, editors. Transformative paleobotany. London: Academic press; 2018. p. 21–33.
Google Scholar
Cúneo NR, Escapa IH. The equisetalean genus Cruciaetheca nov. from the Lower Permian of Patagonia Argentina. Int J Plant Sci. 2006;167:167–77.
Google Scholar
Elgorriaga A, Escapa IH, Rothwell GW, Tomescu AMF, Cúneo NR. Origin of Equisetum: evolution of horsetails (Equisetales) within the major euphyllophyte clade Sphenopsida. Am J Bot. 2018;105:1286–303.
PubMed
Google Scholar
Shubin N, Tabin C, Carroll S. Deep homology and the origin of evolutionary novelty. Nature. 2009;57:818–23.
Google Scholar