Stapf O. Die Arten der Gattung Ephedra. KK Hof-und Staatsdruckerei. Wien: In Commission bei F. Tempsky; 1889.
Google Scholar
Ickert-Bond SM, Skvarla JJ, Chissoe WF. Pollen dimorphism in Ephedra L. (Ephedraceae). Rev Palaeobot Palynol. 2003;124(3–4):325–34.
Article
Google Scholar
Ickert-Bond SM, Renner SS. The Gnetales: recent insights on their morphology, reproductive biology, chromosome numbers, biogeography, and divergence times. J Syst Evol. 2016;54(1):1–16.
Article
Google Scholar
Eames AJ. Relationships of the Ephedrales. Phytomorphology. 1952;2:79–100.
Google Scholar
Kramer KU, Green PS, Kubitzki K. The families and genera of vascular plants. In: Kramer KS, Green PS, editors. V.1: Pteridophytes and gymnosperms. Berlin: Springer; 1990.
Chapter
Google Scholar
Cutler HC. Monograph of the North American species of the genus Ephedra. Ann Mo Bot Gard. 1939;26(4):373–428.
Article
Google Scholar
Mundry M, Stützel T. Morphogenesis of the reproductive shoots of Welwitschia mirabilis and Ephedra distachya (Gnetales), and its evolutionary implications. Org Divers Evol. 2004;4(1–2):91–108.
Article
Google Scholar
Rodriguez-Perez J, Larrinaga AR, Santamaría L. Effects of frugivore preferences and habitat heterogeneity on seed rain: a multi-scale analysis. PLoS ONE. 2012;7(3):e33246.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hollander JL, Vander Wall SB. Dispersal syndromes in North American Ephedra. Int J Plant Sci. 2009;170(3):323–30.
Article
Google Scholar
Hollander JL, Vander Wall SB, Baguley JG. Evolution of seed dispersal in North American Ephedra. Evol Ecol. 2010;24(2):333–45.
Article
Google Scholar
Loera I, Ickert-Bond SM, Sosa V. Ecological consequences of contrasting dispersal syndromes in New World Ephedra: higher rates of niche evolution related to dispersal ability. Ecography. 2015;38(12):1187–99.
Article
Google Scholar
Ickert-Bond SM, Rydin C. Micromorphology of the seed envelope of Ephedra L. (Gnetales) and its relevance for the timing of evolutionary events. Int J Plant Sci. 2011;172(1):36–48.
Article
Google Scholar
Zumajo-Cardona C, Ambrose BA. Deciphering the evolution of the ovule genetic network through expression analyses in Gnetum gnemon. Ann Bot. 2021. https://doi.org/10.1093/aob/mcab059.
Article
PubMed
Google Scholar
Zhang P, Tan HT, Pwee K-H, Kumar PP. Conservation of class C function of floral organ development during 300 million years of evolution from gymnosperms to angiosperms. Plant J. 2004;37(4):566–77.
Article
CAS
PubMed
Google Scholar
Englund M, Carlsbecker A, Engström P, Vergara-Silva F. Morphological, “primary homology” and expression of AG -subfamily MADS-box genes in pines, podocarps, and yews. Evol Dev. 2011;13(2):171–81.
Article
CAS
PubMed
Google Scholar
Lovisetto A, Guzzo F, Tadiello A, Toffali K, Favretto A, Casadoro G. Molecular analyses of MADS-box genes trace back to gymnosperms the invention of fleshy fruits. Mol Biol Evol. 2012;29(1):409–19.
Article
CAS
PubMed
Google Scholar
Lovisetto A, Guzzo F, Busatto N, Casadoro G. Gymnosperm B-sister genes may be involved in ovule/seed development and in some species, in the growth of fleshy fruit-like structures. Ann Bot. 2013;112(3):535–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Münster T, et al. A short history of MADS-box genes in plants. Plant Mol Biol. 2000;42(1):115–49.
Article
CAS
PubMed
Google Scholar
Becker A, Saedler H, Theissen G. Distinct MADS-box gene expression patterns in the reproductive cones of the gymnosperm Gnetum gnemon. Dev Genes Evol. 2003;213(11):567–72.
Article
CAS
PubMed
Google Scholar
Erdmann R, Gramzow L, Melzer R. GORDITA (AGL63) is a young paralog of the Arabidopsis thaliana Bsister MADS box gene ABS (TT16) that has undergone neofunctionalization. Plant J. 2010. https://doi.org/10.1111/j.1365-313X.2010.04290.x.
Article
PubMed
Google Scholar
Mouradov A, Hamdorf B, Teasdale RD, Kim JT, Winter K-U, Theißen G. A DEF/GLO-like MADS-box gene from a gymnosperm: Pinus radiata contains an ortholog of angiosperm B class floral homeotic genes. Dev Genet. 1999;25(3):245–52.
Article
CAS
PubMed
Google Scholar
Tandre K, Svenson M, Svensson ME, Engström P. Conservation of gene structure and activity in the regulation of reproductive organ development of conifers and angiosperms. Plant J. 1998;15(5):615–23.
Article
CAS
PubMed
Google Scholar
Krizek BA, Fletcher JC. Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet. 2005;6(9):688–98.
Article
CAS
PubMed
Google Scholar
Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature. 1990;346(6279):35–9.
Article
CAS
PubMed
Google Scholar
Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature. 2000;405(6783):200–3.
Article
CAS
PubMed
Google Scholar
Winter K-U, Becker A, Münster T, Kim JT, Saedler H, Theissen G. MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. Proc Natl Acad Sci USA. 1999;96(13):7342–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Becker A, Kaufmann K, Freialdenhoven A, Vincent C. A novel MADS-box gene subfamily with a sister-group relationship to class B floral homeotic genes. Mol Genet Genomics. 2002. https://doi.org/10.1007/s00438-001-0615-8.
Article
PubMed
Google Scholar
de Folter S, Shchennikova AV, Franken J, Busscher M, Baskar R, Grossniklaus U, et al. A Bsister MADS-box gene involved in ovule and seed development in petunia and Arabidopsis. Plant J. 2006. https://doi.org/10.1111/j.1365-313X.2006.02846.x.
Article
PubMed
Google Scholar
Nesi N, Debeaujon I, Jond C, Stewart AJ, Jenkins GI, Caboche M, et al. The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. Plant Cell. 2002;14(10):2463–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mizzotti C, Mendes MA, Caporali E, Schnittger A, Kater MM, Battaglia R, et al. The MADS box genes SEEDSTICK and ARABIDOPSIS Bsister play a maternal role in fertilization and seed development. Plant J. 2012;70(3):409–20.
Article
CAS
PubMed
Google Scholar
Yamada K, Saraike T, Shitsukawa N, Hirabayashi C, Takumi S, Murai K. Class D and B sister MADS-box genes are associated with ectopic ovule formation in the pistil-like stamens of alloplasmic wheat (Triticum aestivum L.). Plant Mol Biol. 2009;71(1–2):1–14.
Article
CAS
PubMed
Google Scholar
Prasad K, Zhang X, Tobón E, Ambrose BA. The Arabidopsis B-sister MADS-box protein, GORDITA, represses fruit growth and contributes to integument development. Plant J. 2010;62(2):203–14.
Article
CAS
PubMed
Google Scholar
Paolo D, Orozco-Arroyo G, Rotasperti L, Masiero S, Colombo L, de Folter S, de, et al. Genetic Interaction of SEEDSTICK, GORDITA and AUXIN RESPONSE FACTOR 2 during seed development. Genes. 2021;12(8):1189.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crane PR. Phylogenetic analysis of seed plants and the origin of angiosperms. Ann Mo Bot Gard. 1985. https://doi.org/10.2307/2399221.
Article
Google Scholar
Goremykin V, Bobrova V, Pahnke J, Troitsky A, Antonov A, Martin W. Noncoding sequences from the slowly evolving chloroplast inverted repeat in addition to rbcL data do not support gnetalean affinities of angiosperms. Mol Biol Evol. 1996;13(2):383–96.
Article
CAS
PubMed
Google Scholar
Doyle JA, Hotton CL. Diversification of early angiosperm pollen in a cladistic context. Pollen Spores Patterns Diversif. 1991;169:195.
Google Scholar
Hamby RK, Zimmer EA. Ribosomal RNA as a phylogenetic tool in plant systematics. In: Soltis PS, Soltis DE, Doyle JJ, editors. Molecular systematics of plants. Berlin: Springer; 1992. p. 50–91.
Chapter
Google Scholar
Soltis PS, Soltis DE, Chase MW. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature. 1999;402(6760):402–4.
Article
CAS
PubMed
Google Scholar
Soltis D, Soltis P, Endress P, Chase MW, Manchester S, Judd W, et al. Phylogeny and evolution of the angiosperms: revised and updated. Chicago: University of Chicago Press; 2018.
Book
Google Scholar
Forest F, Moat J, Baloch E, Brummitt NA, Bachman SP, Ickert-Bond S, et al. Gymnosperms on the EDGE. Sci Rep. 2018;8(1):1–11.
Article
CAS
Google Scholar
Chambers RA. Ovule development, fertilization and embryogenesis in Ephedra gerardiana Wall. PhD thesis. University of Massachusetts; 1977.
Leitch AR, Leitch IJ. Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytol. 2012;194(3):629–46.
Article
CAS
PubMed
Google Scholar
Wu H, Yu Q, Ran J-H, Wang X-Q. Unbiased subgenome evolution in allotetraploid species of Ephedra and its implications for the evolution of large genomes in gymnosperms. Genome Biol Evol. 2021;13(2):evaa236.
Article
PubMed
CAS
Google Scholar
Ickert-Bond SM, Sousa A, Min Y, Loera I, Metzgar J, Pellicer J, et al. Polyploidy in gymnosperms—insights into the genomic and evolutionary consequences of polyploidy in Ephedra. Mol Phylogenet Evol. 2020;147:106786.
Article
PubMed
Google Scholar
Stilio VSD, Ickert-Bond SM. Ephedra as a gymnosperm evo-devo model lineage. Evol Dev. 2021;23(3):256–66.
Article
PubMed
Google Scholar
Arenas Gómez CM, Woodcock RM, Smith JJ, Voss RS, Delgado JP. Using transcriptomics to enable a plethodontid salamander (Bolitoglossa ramosi) for limb regeneration research. BMC Genomics. 2018;19(1):704.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. UpSet: visualization of intersecting sets. IEEE Trans Vis Comput Graph. 2014;20(12):1983–92.
Article
PubMed
PubMed Central
Google Scholar
Perochon A, Aldon D, Galaud J-P, Ranty B. Calmodulin and calmodulin-like proteins in plant calcium signaling. Biochimie. 2011;93(12):2048–53.
Article
CAS
PubMed
Google Scholar
Lallemand B, Erhardt M, Heitz T, Legrand M. Sporopollenin biosynthetic enzymes interact and constitute a metabolon localized to the endoplasmic reticulum of tapetum cells. Plant Physiol. 2013;162(2):616–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen M, Ni M. RFI2, a RING-domain zinc finger protein, negatively regulates CONSTANS expression and photoperiodic flowering. Plant J Cell Mol Biol. 2006;46(5):823–33.
Article
CAS
Google Scholar
Gramzow L, Theissen G. A hitchhiker’s guide to the MADS world of plants. Genome Biol. 2010;11(6):1–11.
Article
CAS
Google Scholar
Chen F, Zhang X, Liu X, Zhang L. Evolutionary analysis of MIKCc-type MADS-box genes in gymnosperms and angiosperms. Front Plant Sci. 2017;30(8):895.
Article
Google Scholar
Abdi H, Williams LJ. Principal component analysis. Wiley Interdiscip Rev Comput Stat. 2010;2(4):433–59.
Article
Google Scholar
Gewers FL, Ferreira GR, Arruda HFD, Silva FN, Comin CH, Amancio DR, et al. Principal component analysis: a natural approach to data exploration. ACM Comput Surv CSUR. 2021;54(4):1–34.
Google Scholar
Coen ES, Meyerowitz EM. The war of the whorls: genetic interactions controlling flower development. Nature. 1991;353(6339):31–7.
Article
CAS
PubMed
Google Scholar
Jack T, Brockman LL, Meyerowitz EM. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell. 1992;68(4):683–97.
Article
CAS
PubMed
Google Scholar
Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature. 1992;360(6401):273–7.
Article
CAS
PubMed
Google Scholar
Chen G, Deng W, Peng F, Truksa M, Singer S, Snyder CL, et al. B rassica napus TT16 homologs with different genomic origins and expression levels encode proteins that regulate a broad range of endothelium-associated genes at the transcriptional level. Plant J. 2013;74(4):663–77.
Article
CAS
PubMed
Google Scholar
Hughes AL. The evolution of functionally novel proteins after gene duplication. Proc R Soc Lond B Biol Sci. 1994;256(1346):119–24.
Article
CAS
Google Scholar
Chang D, Duda TF Jr. Extensive and continuous duplication facilitates rapid evolution and diversification of gene families. Mol Biol Evol. 2012;29(8):2019–29.
Article
CAS
PubMed
Google Scholar
Zhang J. Evolution by gene duplication: an update. Trends Ecol Evol. 2003;18(6):292–8.
Article
Google Scholar
Becker A, Kaufmann K, Freialdenhoven A, Vincent C, Li M-A, Saedler H, et al. A novel MADS-box gene subfamily with a sister-group relationship to class B floral homeotic genes. Mol Genet Genomics. 2002;266(6):942–50.
Article
CAS
PubMed
Google Scholar
Kramer EM, Dorit RL, Irish VF. Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics. 1998;149(2):765–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prasad K, Ambrose BA. Shaping up the fruit: control of fruit size by an Arabidopsis B-sister MADS-box gene. Plant Signal Behav. 2010;5(7):899–902.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takaso T. A developmental study of the integument in gymnosperms 3. Ephedra distachya L. and E. equisetina Bge. Acta Bot Neerlandica. 1985;34(1):33–48.
Article
Google Scholar
Rydin C, Khodabandeh A, Endress PK. The female reproductive unit of Ephedra (Gnetales): comparative morphology and evolutionary perspectives. Bot J Linn Soc. 2010;163(4):387–430.
Article
PubMed
Google Scholar
Ghimire B, Lee C, Heo K. Leaf anatomy and its implications for phylogenetic relationships in Taxaceae s. l. J Plant Res. 2014;127(3):373–88.
Article
PubMed
Google Scholar
Dörken VM, Nimsch H, Rudall PJ. Origin of the Taxaceae aril: evolutionary implications of seed-cone teratologies in Pseudotaxus chienii. Ann Bot. 2019;123(1):133–43.
Article
PubMed
CAS
Google Scholar
Takaso T. Structural changes in the apex of the female strobilus and the initiation of the female reproductive organ (ovule) in Ephedra distachya L. and E. equisetina Bge. Acta Bot Neerlandica. 1984;33(3):257–66.
Article
Google Scholar
Lodish H, Berk A, Kaiser CA, Kaiser C, Krieger M, Scott MP, et al. Molecular cell biology. London: Macmillan; 2008.
Google Scholar
Henikoff S, Ahmad K. Assembly of variant histones into chromatin. Annu Rev Cell Dev Biol. 2005;21:133–53.
Article
CAS
PubMed
Google Scholar
Ingouff M, Berger F. Histone3 variants in plants. Chromosoma. 2010;119(1):27–33.
Article
CAS
PubMed
Google Scholar
Marzluff WF, Duronio RJ. Histone mRNA expression: multiple levels of cell cycle regulation and important developmental consequences. Curr Opin Cell Biol. 2002;14(6):692–9.
Article
CAS
PubMed
Google Scholar
Roszak P, Köhler C. Polycomb group proteins are required to couple seed coat initiation to fertilization. Proc Natl Acad Sci USA. 2011;108(51):20826–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hennig L, Derkacheva M. Diversity of Polycomb group complexes in plants: same rules, different players? Trends Genet. 2009;25(9):414–23.
Article
CAS
PubMed
Google Scholar
Mozgova I, Köhler C, Hennig L. Keeping the gate closed: functions of the polycomb repressive complex PRC2 in development. Plant J. 2015. https://doi.org/10.1111/tpj.12828.
Article
PubMed
Google Scholar
Figueiredo DD, Batista RA, Roszak PJ, Hennig L, Köhler C. Auxin production in the endosperm drives seed coat development in Arabidopsis. Elife. 2016;5:e20542.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tamagnone L, Merida A, Parr A, Mackay S, Culianez-Macia FA, Roberts K, et al. The AmMYB308 and AmMYB330 transcription factors from antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell. 1998;10(2):135–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsuwamoto R, Takahata Y. Identification of genes specifically expressed in androgenesis-derived embryo in rapeseed (Brassica napus L.). Breed Sci. 2008;58(3):251–9.
Article
CAS
Google Scholar
Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun. 2002;290(3):998–1009.
Article
CAS
PubMed
Google Scholar
Bihani P, Char B, Bhargava S. Transgenic expression of sorghum DREB2 in rice improves tolerance and yield under water limitation. J Agric Sci. 2011;149(1):95–101.
Article
CAS
Google Scholar
Pei M, Gu C, Zhang S. Genome-wide identification and expression analysis of genes associated with peach (Prunus persica) fruit ripening. Sci Hortic. 2019;27(246):317–27.
Article
CAS
Google Scholar
Pereira L, Santo Domingo M, Ruggieri V, Argyris J, Phillips MA, Zhao G, et al. Genetic dissection of climacteric fruit ripening in a melon population segregating for ripening behavior. Hortic Res. 2020;7(1):1–18.
Article
CAS
Google Scholar
Zuo J, Grierson D, Courtney LT, Wang Y, Gao L, Zhao X, et al. Relationships between genome methylation, levels of non-coding RNAs, mRNAs and metabolites in ripening tomato fruit. Plant J. 2020;103(3):980–94.
Article
CAS
PubMed
Google Scholar
Koyama T, Furutani M, Tasaka M, Ohme-Takagi M. TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. Plant Cell. 2007;19(2):473–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei B, Zhang J, Pang C, Yu H, Guo D, Jiang H, et al. The molecular mechanism of SPOROCYTELESS/NOZZLE in controlling Arabidopsis ovule development. Cell Res. 2015;25(1):121–34.
Article
CAS
PubMed
Google Scholar
Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol. 2001;4(5):447–56.
Article
CAS
PubMed
Google Scholar
Long M, Betrán E, Thornton K, Wang W. The origin of new genes: glimpses from the young and old. Nat Rev Genet. 2003;4(11):865–75.
Article
CAS
PubMed
Google Scholar
Tautz D, Domazet-Lošo T. The evolutionary origin of orphan genes. Nat Rev Genet. 2011;12(10):692–702.
Article
CAS
PubMed
Google Scholar
Khalturin K, Hemmrich G, Fraune S, Augustin R, Bosch TCG. More than just orphans: are taxonomically-restricted genes important in evolution? Trends Genet. 2009;25(9):404–13.
Article
CAS
PubMed
Google Scholar
Wilson GA, Bertrand N, Patel Y, Hughes JB, Feil EJ, Field D. Orphans as taxonomically restricted and ecologically important genes. Microbiology. 2005;151(8):2499–501.
Article
CAS
PubMed
Google Scholar
Wilson GA, Feil EJ, Lilley AK, Field D. Large-scale comparative genomic ranking of taxonomically restricted genes (TRGs) in bacterial and archaeal genomes. PLoS ONE. 2007;2(3):e324.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12(1):59–60.
Article
CAS
PubMed
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–512.
Article
CAS
PubMed
Google Scholar
Larsson A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 2014;30(22):3276–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9(8):772–772.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML web servers. Syst Biol. 2008;57(5):758–71.
Article
PubMed
Google Scholar
Miller MA, Pfeiffer W, Schwartz T. The CIPRES science gateway: enabling high-impact science for phylogenetics researchers with limited resources. In: proceedings of the 1st conference of the extreme science and engineering discovery environment: bridging from the eXtreme to the campus and beyond. New York, NY, USA: Association for Computing Machinery; 2012. p. 1–8. (XSEDE ’12). https://doi.org/10.1145/2335755.2335836
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12(1):323.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheung P, Lau P. Epigenetic regulation by histone methylation and histone variants. Mol Endocrinol. 2005;19(3):563–73.
Article
CAS
PubMed
Google Scholar
Sims RJ III, Nishioka K, Reinberg D. Histone lysine methylation: a signature for chromatin function. TRENDS Genet. 2003;19(11):629–39.
Article
CAS
PubMed
Google Scholar
Figueiredo DD, Köhler C. Signalling events regulating seed coat development. Biochem Soc Trans. 2014;42(2):358–63.
Article
CAS
PubMed
Google Scholar
Katoh K, Standley DM. MAFFT: iterative refinement and additional methods. In: Russell DJ, editor. Multiple sequence alignment methods. Totowa: Humana Press; 2014. p. 131–46. https://doi.org/10.1007/978-1-62703-646-7_8.
Chapter
Google Scholar