Blair SS. Segmentation in animals. Curr Biol. 2008;18:R991–5.
Article
CAS
PubMed
Google Scholar
Minelli A. The tapeworm’s elusive antero-posterior polarity. BMC Biol. 2016;14:1–3.
Article
CAS
Google Scholar
Egger B. Making heads or tails of tapeworms. Trends Parasitol. 2016;32:511–2.
Article
PubMed
Google Scholar
Hotez PJ, Alvarado M, Basanez M-G, Bolliger I, Bourne R, Boussinesq M, et al. The global burden of disease study 2010: interpretation and implications for the neglected tropical diseases. PLoS Negl Trop Dis. 2014;8:e2865.
Article
PubMed
PubMed Central
Google Scholar
Molyneux DH, Savioli L, Engels D. Neglected tropical diseases: progress towards addressing the chronic pandemic. Lancet. 2016;380:1–14.
Google Scholar
Soares Magalhães RJ, Fançony C, Gamboa D, Langa AJ, Sousa-Figueiredo JC, Clements ACA, et al. Extending helminth control beyond STH and schistosomiasis: the case of human hymenolepiasis. PLoS Negl Trop Dis. 2013;7:e2321.
Article
PubMed
PubMed Central
Google Scholar
Ashford RW, Crewe W. The parasites of Homo sapiens. 2nd ed. London: Taylor & Francis; 2003.
Book
Google Scholar
SantamariaFries M, Fajardo L-GLF, Sogin ML, Olson PD, Relman DA. Lethal infection by a previously unrecognised metazoan parasite. Lancet. 1996;347:1797–801.
Article
CAS
Google Scholar
Muehlenbachs A, Bhatnagar J, Agudelo CA, Hidron A, Eberhard ML, Mathison BA, et al. Malignant transformation of Hymenolepis nana in a human host. N Engl J Med. 2015;373:1845–52.
Article
CAS
PubMed
Google Scholar
Olson PD. Hox genes and the parasitic flatworms: new opportunities, challenges and lessons from the free-living. Parasitol Int. 2008;57:8–17.
Article
CAS
PubMed
Google Scholar
Collins JJI, Newmark PA. It’s no fluke: the planarian as a model for understanding schistosomes. PLoS Pathog. 2013;9:e1003396-6.
Google Scholar
Koziol U. Evolutionary developmental biology (evo-devo) of cestodes. Exp Parasitol. 2017;180:84–100.
Article
PubMed
Google Scholar
Skinner DE, Rinaldi G, Koziol U, Brehm K. How might flukes and tapeworms maintain genome integrity without a canonical piRNA pathway? Trends Parasitol. 2014;30:123–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Collins JJI, Wang B, Lambrus BG, Tharp ME, Iyer H, Newmark PA. Adult somatic stem cells in the human parasite Schistosoma mansoni. Nature. 2013;494:1–5.
Article
CAS
Google Scholar
Koziol U, Rauschendorfer T, Rodríguez LZ, Brehm K. The unique stem cell system of the immortal larva of the human parasite Echinococcus multilocularis. EvoDevo. 2014;5:10.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wendt GR, Collins JJI. Schistosomiasis as a disease of stem cells. Curr Opin Genet Dev. 2016;40:95–102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brehm K, Koziol U. On the importance of targeting parasite stem cells in anti-echinococcosis drug development. Parasite. 2014;21:72.
Article
PubMed
PubMed Central
Google Scholar
Robb SMC, Ross E, Sánchez Alvarado A. SmedGD: the Schmidtea mediterranea genome database. Nucleic Acids Res. 2007;36:D599–606.
Article
PubMed
PubMed Central
CAS
Google Scholar
Robb SMC, Gotting K, Ross E, Sánchez Alvarado A. The Schmidtea mediterranea genome database. Genesis. 2015;53:535–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sánchez Alvarado A, Newmark PA. Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proc Natl Acad Sci USA. 1999;96:5049–54.
Article
PubMed
PubMed Central
Google Scholar
Reddien PW, Bermange AL, Murfitt KJ, Jennings JR, Sánchez Alvarado A. Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria. Dev Cell. 2005;8:635–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rouhana L, Weiss JA, Forsthoefel DJ, Lee H, King RS, Inoue T, et al. RNA interference by feeding in vitro-synthesized double-stranded RNA to planarians: methodology and dynamics. Dev Dyn. 2013;242:718–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Newmark PA, Sánchez Alvarado A. Not your father’s planarian: a classical model enters the era of functional genomics. Nat Rev Genet. 2002;3:210–9.
Article
CAS
PubMed
Google Scholar
Newmark PA, Sánchez Alvarado A. Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev Biol. 2000;220:142–53.
Article
CAS
PubMed
Google Scholar
Reddien PW, Oviedo NJ, Jennings JR, Jenkin JC, Sánchez Alvarado A. SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science. 2005;310:1327–30.
Article
CAS
PubMed
Google Scholar
Zhu SJ, Pearson BJ. (Neo)blast from the past: new insights into planarian stem cell lineages. Curr Opin Genet Dev. 2016;40:74–80.
Article
CAS
PubMed
Google Scholar
Peter R, Gschwentner R, Schürmann W, Rieger RM, Ladurner P. The significance of stem cells in free-living flatworms: one common source for all cells in the adult. J App Biomed. 2004;2:21–35.
Google Scholar
Reddien PW. Constitutive gene expression and the specification of tissue identity in adult planarian biology. Trends Genet. 2011;27:277–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petersen CP, Reddien PW. Smed-betacatenin-1 is required for anteroposterior blastema polarity in planarian regeneration. Science. 2008;319:327–30.
Article
CAS
PubMed
Google Scholar
Gurley KA, Rink JC, Alvarado AS. Smed-βcatenin-1 defines head versus tail identity during planarian regeneration and homeostasis. Science. 2008;319:323–7.
Article
CAS
PubMed
Google Scholar
Iglesias M, Gomez-Skarmeta JL, Adell T. Silencing of Smed-βcatenin1 generates radial-like hypercephalized planarians. Development. 2008;135:1215–21.
Article
CAS
PubMed
Google Scholar
Berriman M, Wilson RA, Dillon GP, Cerqueira GC, Ashton PD, Aslett MA, et al. The genome of the blood fluke Schistosoma mansoni. Nature. 2009;460:352–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Protasio AV, Tsai IJ, Babbage A, Nichol S, Hunt M, Aslett MA, et al. A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni. PLoS Negl Trop Dis. 2012;6:e1455-13.
Article
CAS
Google Scholar
Olson PD, Zarowiecki M, Kiss F, Brehm K. Cestode genomics—progress and prospects for advancing basic and applied aspects of flatworm biology. Parasite Immunol. 2012;34:130–50.
Article
CAS
PubMed
Google Scholar
Tsai IJ, Zarowiecki M, Holroyd N, Brooks KL, Tracey A, Bobes RJ, et al. The genomes of four tapeworm species reveal adaptations to parasitism. Nature. 2013;496:57–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang B, Collins JJI, Newmark PA. Functional genomic characterization of neoblast-like stem cells in larval Schistosoma mansoni. eLife. 2013;2:e00768.
Article
PubMed
PubMed Central
Google Scholar
Koziol U, Domínguez MF, Marín M, Kun A, Castillo E. Stem cell proliferation during in vitro development of the model cestode Mesocestoides corti from larva to adult worm. Front Zool. 2010;7:22.
Article
PubMed
PubMed Central
Google Scholar
Collins JJI, King RS, Cogswell AA, Williams DL, Newmark PA. An atlas for Schistosoma mansoni organs and life-cycle stages using cell type-specific markers and confocal microscopy. PLoS Negl Trop Dis. 2011;5:e1009.
Article
PubMed
PubMed Central
Google Scholar
Rozario T, Newmark PA. A confocal microscopy-based atlas of tissue architecture in the tapeworm Hymenolepis diminuta. Exp Parasitol. 2015;158:31–41.
Article
PubMed
Google Scholar
Cogswell AA, Collins JJI, Newmark PA, Williams DL. Whole mount in situ hybridization methodology for Schistosoma mansoni. Mol Biochem Parasitol. 2011;178:46–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bizarro CV, Bengtson MH, Ricachenevsky FK, Zaha A, Sogayar MC, Ferreira HB. Differentially expressed sequences from a cestode parasite reveals conserved developmental genes in platyhelminthes. Mol Biochem Parasitol. 2005;144:114–8.
Article
CAS
PubMed
Google Scholar
Cunningham LJ, Olson PD. Description of Hymenolepis microstoma (Nottingham strain): a classical tapeworm model for research in the genomic era. Parasites Vectors. 2010;3:123.
Article
PubMed
PubMed Central
Google Scholar
Zeitlinger J, Stark A. Developmental gene regulation in the era of genomics. Dev Biol. 2010;339:230–9.
Article
CAS
PubMed
Google Scholar
Howe KL, Bolt BJ, Cain S, Chan J, Chen WJ, Davis P, et al. WormBase 2016: expanding to enable helminth genomic research. Nucleic Acids Res. 2015;44:D774–80.
Article
PubMed
PubMed Central
CAS
Google Scholar
Howe KL, Bolt BJ, Shafie M, Kersey P, Berriman M. WormBase ParaSite—a comprehensive resource for helminth genomics. Mol Biochem Parasitol. 2017;215:2–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene Ontology: tool for the unification of biology. Nat Genet. 2000;25:25–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
The Gene Ontology Consortium. Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res. 2017;45:D331–8.
Article
CAS
Google Scholar
Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11:R14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Supek F, Bošnjak M, Skunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE. 2011;6:e21800–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mar Albà M. Zinc-finger domains in metazoans: evolution gone wild. Genome Biol. 2017;18:168.
Article
PubMed
CAS
Google Scholar
Juliano CE, Swartz SZ, Wessel GM. A conserved germline multipotency program. Development. 2010;137:4113–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pearson BJ, Sánchez Alvarado A. A planarian p53 homolog regulates proliferation and self-renewal in adult stem cell lineages. Development. 2010;137:213.
Article
CAS
PubMed
PubMed Central
Google Scholar
Halton DW, Maule AG. Flatworm nerve-muscle: structural and functional analysis. Can J Zool. 2004;82:316–33.
Article
Google Scholar
Bozzi Y, Casarosa S, Caleo M. Epilepsy as a neurodevelopmental disorder. Front Psychiatry. 2012;3:19.
Article
PubMed
PubMed Central
Google Scholar
Beermann A, Schröder R. Functional stability of the aristaless gene in appendage tip formation during evolution. Dev Genes Evol. 2004;214:303–8.
Article
CAS
PubMed
Google Scholar
Campbell G, Tomlinson A. The roles of the homeobox genes aristaless and Distal-less in patterning the legs and wings of Drosophila. Development. 1998;125:4483–93.
CAS
PubMed
Google Scholar
Miyawaki K, Inoue Y, Mito T, Fujimoto T, Matsushima K, Shinmyo Y, et al. Expression patterns of aristaless in developing appendages of Gryllus bimaculatus (cricket). Mech Dev. 2002;113:181–4.
Article
CAS
PubMed
Google Scholar
Smith KM, Gee L, Bode HR. HyAlx, an aristaless-related gene, is involved in tentacle formation in hydra. Development. 2000;127:4743–52.
CAS
PubMed
Google Scholar
Holland P. Evolution of homeobox genes. WIREs Dev Biol. 2013;2:31–45.
Article
CAS
Google Scholar
Fröbius AC, Seaver EC. Capitella sp., I homeobrain-like, the first lophotrochozoan member of a novel paired-like homeobox gene family. Gene Expr Patterns. 2006;6:985–91.
Article
PubMed
CAS
Google Scholar
Mazza ME, Pang K, Reitzel AM, Martindale MQ, Finnerty JR. A conserved cluster of three PRD-class homeobox genes (homeobrain, rx and orthopedia) in the Cnidaria and Protostomia. EvoDevo. 2010;1:3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Umesono Y, Watanabe K, Agata K. A planarian orthopedia homolog is specifically expressed in the branch region of both the mature and regenerating brain. Dev Growth Differ. 1997;39:723–7.
Article
CAS
PubMed
Google Scholar
Koziol U, Jarero F, Olson PD, Brehm K. Comparative analysis of Wnt expression identifies a highly conserved developmental transition in flatworms. BMC Biol. 2016;14:10.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yu JK, Holland ND, Holland LZ. AmphiFoxQ2, a novel winged helix/forkhead gene, exclusively marks the anterior end of the amphioxus embryo. Dev Genes Evol. 2003;213:102–5.
CAS
PubMed
Google Scholar
Sinigaglia C, Busengdal H, Leclère L, Technau U, Rentzsch F. The bilaterian head patterning gene six3/6 controls aboral domain development in a cnidarian. PLoS Biol. 2013;11:e1001488.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fritzenwanker JH, Gerhart J, Freeman RM, Lowe CJ. The Fox/Forkhead transcription factor family of the hemichordate Saccoglossus kowalevskii. EvoDevo. 2014;5:17.
Article
PubMed
PubMed Central
Google Scholar
Hunnekuhl VS, Akam M. An anterior medial cell population with an apical-organ-like transcriptional profile that pioneers the central nervous system in the centipede Strigamia maritima. Dev Biol. 2014;396:136–49.
Article
CAS
PubMed
Google Scholar
Lapan SW, Reddien PW. dlx and sp6-9 Control optic cup regeneration in a prototypic eye. PLoS Genet. 2011;7:e1002226.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scimone ML, Kravarik KM, Lapan SW, Reddien PW. Neoblast specialization in regeneration of the planarian Schmidtea mediterranea. Stem Cell Rep. 2014;3:339–52.
Article
CAS
Google Scholar
Andrikou C, Arnone MI. Too many ways to make a muscle: evolution of GRNs governing myogenesis. Zool Anz. 2015;256:2–13.
Article
Google Scholar
Tapscott SJ. The circuitry of a master switch: myod and the regulation of skeletal muscle gene transcription. Development. 2005;132:2685–95.
Article
CAS
PubMed
Google Scholar
Cebrià F, Bueno D, Reigada S, Romero R. Intercalary muscle cell renewal in planarian pharynx. Dev Genes Evol. 1999;209:249–53.
Article
PubMed
Google Scholar
Cebrià F, Vispo M, Newmark P, Bueno D, Romero R. Myocyte differentiation and body wall muscle regeneration in the planarian Girardia tigrina. Dev Genes Evol. 1997;207:306–16.
Article
PubMed
Google Scholar
Cebrià F. Planarian body-wall muscle: regeneration and function beyond a simple skeletal support. Front Cell Dev Biol. 2016;4:8.
Article
PubMed
PubMed Central
Google Scholar
Scimone ML, Cote LE, Reddien PW. Orthogonal muscle fibres have different instructive roles in planarian regeneration. Nature. 2017;126:1–22.
Google Scholar
Ryan AK, Rosenfeld MG. POU domain family values: flexibility, partnerships, and developmental codes. Genes Dev. 1997;11:1207–25.
Article
CAS
PubMed
Google Scholar
Gold DA, Gates RD, Jacobs DK. The early expansion and evolutionary dynamics of POU class genes. Mol Biol Evol. 2014;31:3136–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998;95:379–91.
Article
CAS
PubMed
Google Scholar
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.
Article
CAS
PubMed
Google Scholar
Munoz-Marmol AM, Casali A, Miralles A, Bueno D, Bayascs JR, Romero R, et al. Characterization of platyhelminth POU domain genes: ubiquitous and specific anterior nerve cell expression of different epitopes of GtPOU-1. Mech Dev. 1998;76:127–40.
Article
CAS
PubMed
Google Scholar
Wollesen T, McDougall C, Degnan BM, Wanninger A. POU genes are expressed during the formation of individual ganglia of the cephalopod central nervous system. EvoDevo. 2014;5:41.
Article
PubMed
PubMed Central
CAS
Google Scholar
Onal P, Grün D, Adamidi C, Rybak A, Solana J, Mastrobuoni G, et al. Gene expression of pluripotency determinants is conserved between mammalian and planarian stem cells. EMBO J. 2012;31:2755–69.
Article
PubMed
PubMed Central
CAS
Google Scholar
Scimone ML, Srivastava M, Bell GW, Reddien PW. A regulatory program for excretory system regeneration in planarians. Development. 2011;138:4387–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wagner DE, Ho JJ, Reddien PW. Genetic regulators of a pluripotent adult stem cell system in planarians identified by RNAi and clonal analysis. Stem Cell. 2012;10:299–311.
CAS
Google Scholar
Jager M, Quéinnec E, Houliston E, Manuel M. Expansion of the SOX gene family predated the emergence of the Bilateria. Mol Phylogenet Evol. 2006;39:468–77.
Article
CAS
PubMed
Google Scholar
Sarkar A, Hochedlinger K. The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell. 2013;12:15–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM. A census of human transcription factors: function, expression and evolution. Nat Rev Genet. 2009;10:252–63.
Article
CAS
PubMed
Google Scholar
Seetharam A, Stuart GW. A study on the distribution of 37 well conserved families of C2H2 zinc finger genes in eukaryotes. BMC Genom. 2013;14:420.
Article
CAS
Google Scholar
de Mendoza A, Sebé-Pedrós A, Šestak MS, Matejčić M, Torruella G, Domazet-Lošo T, et al. Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages. Proc Natl Acad Sci USA. 2013;110:E4858–66.
Article
PubMed
CAS
PubMed Central
Google Scholar
Demircan T, Berezikov E. The Hippo pathway regulates stem cells during homeostasis and regeneration of the flatworm Macrostomum lignano. Stem Cells Dev. 2013;22:2174–85.
Article
PubMed
Google Scholar
Lin AYT, Pearson BJ. Yorkie is required to restrict the injury responses in planarians. PLoS Genet. 2017;13:e1006874.
Article
PubMed
PubMed Central
CAS
Google Scholar
Salvetti A, Rossi L, Lena A, Batistoni R, Deri P, Rainaldi G, et al. DjPum, a homologue of Drosophila Pumilio, is essential to planarian stem cell maintenance. Development. 2005;132:1863–74.
Article
CAS
PubMed
Google Scholar
Koziol U, Marín M, Castillo E. Pumilio genes from the Platyhelminthes. Dev Genes Evol. 2008;218:47–53.
Article
CAS
PubMed
Google Scholar
Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002;3:155–66.
Article
CAS
PubMed
Google Scholar
Soleimani VD, Yin H, Jahani-Asl A, Ming H, Kockx CEM, van Ijcken WFJ, et al. Snail regulates MyoD binding-site occupancy to direct enhancer switching and differentiation-specific transcription in myogenesis. Mol Cell. 2012;47:457–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amoutzias GD, Veron AS, Weiner J, Robinson-Rechavi M, Bornberg-Bauer E, Oliver SG, et al. One billion years of bZIP transcription factor evolution: conservation and change in dimerization and DNA-binding site specificity. Mol Biol Evol. 2007;24:827–35.
Article
CAS
PubMed
Google Scholar
Koga H, Hashimoto N, Suzuki DG, Ono H. A genome-wide survey of genes encoding transcription factors in Japanese pearl oyster Pinctada fucata: II. Tbx, Fox, Ets, HMG, NFκB, bZIP, and C2H2 zinc fingers. Zool Sci. 2013;30:858–67.
Article
CAS
Google Scholar
Umesono Y, Tasaki J, Nishimura Y, Hrouda M, Kawaguchi E, Yazawa S, et al. The molecular logic for planarian regeneration along the anterior–posterior axis. Nature. 2014;500:73–6.
Article
CAS
Google Scholar
Witchley JN, Mayer M, Wagner DE, Owen JH, Reddien PW. Muscle cells provide instructions for planarian regeneration. Cell Rep. 2013;4:633–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koziol U, Brehm K. Recent advances in Echinococcus genomics and stem cell research. Vet Parasitol. 2015;213:92–102.
Article
CAS
PubMed
Google Scholar
Sulgostowska T. The development of organ systems in cestodes. II. Histogenesis of the reproductive system in Hymenolepis diminuta (Rudolphi, 1819) (Hymenolepididae). Acta Parasitol Polonica. 1974;22:179–90.
Google Scholar
Heldin CH, Miyazono K, Tendijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997;390:465–71.
Article
CAS
PubMed
Google Scholar
Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425:577–84.
Article
CAS
PubMed
Google Scholar
Freitas TC, Jung E, Pearce EJ. TGF-β signaling controls embryo development in the parasitic flatworm Schistosoma mansoni. PLoS Pathog. 2007;3:e52.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kenny NJ, Namigai EKO, Dearden PK, Hui JHL, Grande C, Shimeld SM. The Lophotrochozoan TGF-β signalling cassette—diversification and conservation in a key signalling pathway. Int J Dev Biol. 2014;58:533–49.
Article
CAS
PubMed
Google Scholar
Osman A, Niles EG, Verjovski-Almeida S, LoVerde PT. Schistosoma mansoni TGF-β receptor II: role in host ligand-induced regulation of a schistosome target gene. PLoS Pathog. 2006;2:e54.
Article
PubMed
PubMed Central
CAS
Google Scholar
de Robertis EM, Sasai Y. A common plan for dorsoventral patterning in Bilateria. Nature. 1996;380:37–40.
Article
PubMed
Google Scholar
Molina MD, Salo E, Cebrià F. Organizing the DV axis during planarian regeneration. Commun Integr Biol. 2011;4:498–500.
Article
PubMed
PubMed Central
Google Scholar
Molina MD, Neto A, Maeso I, Gómez-Skarmeta JL, Salo E, Cebrià F. Noggin and noggin-like genes control dorsoventral axis regeneration in planarians. Curr Biol. 2011;21:300–5.
Article
CAS
PubMed
Google Scholar
Molina MD, Salo E, Cebrià F. The BMP pathway is essential for re-specification and maintenance of the dorsoventral axis in regenerating and intact planarians. Dev Biol. 2007;311:79–94.
Article
CAS
PubMed
Google Scholar
Orii H, Watanabe K. Bone morphogenetic protein is required for dorso-ventral patterning in the planarian Dugesia japonica. Dev Growth Differ. 2007;49:345–9.
Article
CAS
PubMed
Google Scholar
Gaviño MA, Reddien PW. A Bmp/Admp regulatory circuit controls maintenance and regeneration of dorsal-ventral polarity in planarians. Curr Biol. 2011;21:294–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Reddien PW, Bermange A, Kicza A, Sánchez Alvarado A. BMP signaling regulates the dorsal planarian midline and is needed for asymmetric regeneration. Development. 2007;134:4043.
Article
CAS
PubMed
Google Scholar
Range RC, Wei Z. An anterior signaling center patterns and sizes the anterior neuroectoderm of the sea urchin embryo. Development. 2016;143:1523–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei Z, Yaguchi J, Yaguchi S, Angerer RC, Angerer LM. The sea urchin animal pole domain is a Six3-dependent neurogenic patterning center. Development. 2009;136:1179–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steinmetz PRH, Urbach R, Posnien N, Eriksson J, Kostyuchenko RP, Brena C, et al. Six3 demarcates the anterior-most developing brain region in bilaterian animals. EvoDevo. 2010;1:14.
Article
PubMed
PubMed Central
Google Scholar
Koziol U, Brehm K. Anatomy and development of the larval nervous system in Echinococcus multilocularis. Front Zool. 2013;10:24.
Article
PubMed
PubMed Central
Google Scholar
Pineda D, Salo E. Planarian Gtsix3, a member of the Six/so gene family, is expressed in brain branches but not in eye cells. Mech Dev. 2002;2:169–73.
CAS
Google Scholar
Wilson V, Schiller E. The neuroanatomy of Hymenolepis diminuta and H. nana. J Parasitol. 1969;55:261–70.
Article
CAS
PubMed
Google Scholar
Webb RA. Putative neurosecretory cells of the cestode Hymenolepis microstoma. J Parasitol. 1976;62:756–60.
Article
CAS
PubMed
Google Scholar
Reuter M, Gustafsson M. Neuronal signal substances in asexual multiplication and development in flatworms. Cell Mol Neurobiol. 1996;16:591–616.
Article
CAS
PubMed
Google Scholar
Rivera AS, Weisblat DA. And Lophotrochozoa makes three: Notch/Hes signaling in annelid segmentation. Dev Genes Evol. 2008;219:37–43.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shah C, Vangompel MJW, Naeem V, Chen Y, Lee T, Angeloni N, et al. Widespread presence of human BOULE homologs among animals and conservation of their ancient reproductive function. PLoS Genet. 2010;6:e1001022.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kuales G, de Mulder K, Glashauser J, Salvenmoser W, Takashima S, Hartenstein V, et al. Boule-like genes regulate male and female gametogenesis in the flatworm Macrostomum lignano. Dev Biol. 2011;357:117–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iyer H, Issigonis M, Sharma PP, Extavour CGM, Newmark PA. A premeiotic function for boule in the planarian Schmidtea mediterranea. Proc Natl Acad Sci USA. 2016;113:E3509–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steiner JK, Tasaki J, Rouhana L. Germline defects caused by Smed-boule RNA-interference reveal that egg capsule deposition occurs independently of fertilization, ovulation, mating, or the presence of gametes in planarian flatworms. PLoS Genet. 2016;12:e1006030.
Article
PubMed
PubMed Central
CAS
Google Scholar
Blake JA, Ziman MR. Pax genes: regulators of lineage specification and progenitor cell maintenance. Development. 2014;141:737–51.
Article
CAS
PubMed
Google Scholar
Aloisio GM, Nakada Y, Saatcioglu HD, Peña CG, Baker MD, Tarnawa ED, et al. PAX7 expression defines germline stem cells in the adult testis. J Clin Investig. 2014;124:3929–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blassberg RA, Felix DA, Tejada-Romero B, Aboobaker AA. PBX/extradenticle is required to re-establish axial structures and polarity during planarian regeneration. Development. 2013;140:730–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takahashi H, Kamiya A, Ishiguro A, Suzuki AC, Saitou N, Toyoda A, et al. Conservation and diversification of Msx protein in metazoan evolution. Mol Biol Evol. 2008;25:69–82.
Article
CAS
PubMed
Google Scholar
Ramos C, Robert B. msh/Msx gene family in neural development. Trends Genet. 2005;21:624–32.
Article
CAS
PubMed
Google Scholar
Galle S, Yanze N, Seipel K. The homeobox gene Msx in development and transdifferentiation of jellyfish striated muscle. Int J Dev Biol. 2005;49:961–7.
Article
CAS
PubMed
Google Scholar
Shimeld SM, McKay IJ, Sharpe PT. The murine homeobox gene Msx-3 shows highly restricted expression in the developing neural tube. Mech Dev. 1996;55:201–10.
Article
CAS
PubMed
Google Scholar
Saudemont A, Dray N, Hudry B, Le Gouar M, Vervoort M, Balavoine G. Complementary striped expression patterns of NK homeobox genes during segment formation in the annelid Platynereis. Dev Biol. 2008;317:430–43.
Article
CAS
PubMed
Google Scholar
Mannini L, Deri P, Gremigni V, Rossi L, Salvetti A, Batistoni R. Two msh/msx-related genes, Djmsh1 and Djmsh2, contribute to the early blastema growth during planarian head regeneration. Int J Dev Biol. 2008;52:943–52.
Article
CAS
PubMed
Google Scholar
Le Bouffant R, Souquet B, Duval N, Duquenne C, Herve R, Frydman N, et al. Msx1 and Msx2 promote meiosis initiation. Development. 2011;138:5393–402.
Article
PubMed
CAS
Google Scholar
Nallasamy S, Li Q, Bagchi MK, Bagchi IC. Msx homeobox genes critically regulate embryo implantation by controlling paracrine signaling between uterine stroma and epithelium. PLoS Genet. 2012;8:e1002500–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ryan JF, Burton PM, Mazza ME, Kwong GK, Mullikin JC, Finnerty JR. The cnidarian-bilaterian ancestor possessed at least 56 homeoboxes: evidence from the starlet sea anemone, Nematostella vectensis. Genome Biol. 2006;7:R64.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhong Y-F, Butts T, Holland PW. HomeoDB: a database of homeobox gene diversity. Evol Dev. 2008;10:516–8.
Article
CAS
PubMed
Google Scholar
Zhong Y-F, Holland P. HomeoDB2: functional expansion of a comparative homeobox gene database for evolutionary developmental biology. Evol Dev. 2011;13:567–8.
Article
PubMed
PubMed Central
Google Scholar
Homminga I, Pieters R, Meijerink JPP. NKL homeobox genes in leukemia. Leukemia. 2011;26:572–81.
Article
PubMed
CAS
Google Scholar
Knirr S, Azpiazu N, Frasch M. The role of the NK-homeobox gene slouch (S59) in somatic muscle patterning. Development. 1999;126:4525–35.
CAS
PubMed
Google Scholar
Lu Z, Sessler F, Holroyd N, Hahnel S, Quack T, Berriman M, et al. Schistosome sex matters: a deep view into gonad-specific and pairing-dependent transcriptomes reveals a complex gender interplay. Sci Rep. 2016;6:1–14.
Article
CAS
Google Scholar
Acampora D, Gulisano M, Broccoli V, Simeone A. Otx genes in brain morphogenesis. Prog Neurobiol. 2001;64:69–95.
Article
CAS
PubMed
Google Scholar
Umesono Y, Watanabe K, Agata K. Distinct structural domains in the planarian brain defined by the expression of evolutionarily conserved homeobox genes. Dev Genes Evol. 1999;209:31–9.
Article
CAS
PubMed
Google Scholar
Cebrià F, Kudome T, Nakazawa M, Mineta K, Ikeo K, Gojobori T, et al. The expression of neural-specific genes reveals the structural and molecular complexity of the planarian central nervous system. Mech Dev. 2002;116:199–204.
Article
PubMed
Google Scholar
Lapan SW, Reddien PW. Transcriptome analysis of the planarian eye identifies ovo as a specific regulator of eye regeneration. Cell Rep. 2012;2:294–307.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hassan B, Li L, Bremer KA, Chang WR, Pinsonneault J, Vaessin H. Prospero is a panneural transcription factor that modulates homeodomain protein activity. Proc Natl Acad Sci USA. 1997;94:10991–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lai S-L, Doe CQ. Transient nuclear Prospero induces neural progenitor quiescence. eLife. 2014;3:379–82.
Google Scholar
Choksi SP, Southall TD, Bossing T, Edoff K, de Wit E, Fischer BE, et al. Prospero acts as a binary switch between self-renewal and differentiation in Drosophila neural stem cells. Dev Cell. 2006;11:775–89.
Article
CAS
PubMed
Google Scholar
Georges A, Auguste A, Bessiere L, Vanet A, Todeschini AL, Veitia RA. FOXL2: a central transcription factor of the ovary. J Mol Endocrinol. 2013;52:R17–33.
Article
PubMed
CAS
Google Scholar
Laumer CE, Hejnol A, Giribet G. Nuclear genomic signals of the “microturbellarian” roots of platyhelminth evolutionary innovation. eLife. 2015;4:e05503.
Article
PubMed Central
CAS
Google Scholar
Egger B, Lapraz F, Tomiczek B, Müller S, Dessimoz C, Girstmair J, et al. A transcriptomic-phylogenomic analysis of the evolutionary relationships of flatworms. Curr Biol. 2015;25:1347–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martín-Durán JM, Egger B. Developmental diversity in free-living flatworms. EvoDevo. 2012;3:7.
Article
PubMed
PubMed Central
Google Scholar
Wang J, Collins JJI. Identification of new markers for the Schistosoma mansoni vitelline lineage. Int J Parasitol. 2016;46:405–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vasudevan S, Starostina NG, Kipreos ET. The Caenorhabditis elegans cell-cycle regulator ZYG-11 defines a conserved family of CUL-2 complex components. EMBO Rep. 2007;8:279–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Vasudevan S, Kipreos ET. CUL-2 and ZYG-11 promote meiotic anaphase II and the proper placement of the anterior-posterior axis in C. elegans. Development. 2004;131:3513–25.
Article
CAS
PubMed
Google Scholar
Blockus H, Chédotal A. Slit-Robo signaling. Development. 2016;143:3037–44.
Article
CAS
PubMed
Google Scholar
Petersen CP, Reddien PW. Wnt signaling and the polarity of the primary body axis. Cell. 2009;139:1056–68.
Article
CAS
PubMed
Google Scholar
International Helminth Genomes Consortium, Coghlan A, Mitreva M, Berriman M. Comparative genomics of the major parasitic worms. Nat Genet. 2018 (in press).
Nelson PA, Buggs RJA. Next generation apomorphy: the ubiquity of taxonomically restricted genes. In: Olson PD, Hughes J, Cotton JA, editors. Next generation systematics. Cambridge: Cambridge University Press; 2016. p. 237–63.
Google Scholar
Khalturin K, Hemmrich G, Fraune S, Augustin R. More than just orphans: are taxonomically-restricted genes important in evolution? Trends Genet. 2009;25:404–13.
Article
CAS
PubMed
Google Scholar
Domínguez MF, Koziol U, Porro V, Costábile A, Estrade S, Tort JF, et al. A new approach for the characterization of proliferative cells in cestodes. Exp Parasitol. 2014;138:25–9.
Article
PubMed
CAS
Google Scholar
Collins JJI, Wendt GR, Iyer H, Newmark PA. Stem cell progeny contribute to the schistosome host-parasite interface. eLife. 2016;5:e12473.
Article
PubMed
PubMed Central
Google Scholar
van Wolfswinkel JC, Wagner DE, Reddien PW. Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment. Cell Stem Cell. 2014;15:326–39.
Article
PubMed
PubMed Central
CAS
Google Scholar
Voge M. Development of Hymenolepis microstoma (Cestoda: Cyclophyllidea) in the intermediate host Tribolium confusum. J Parasitol. 1964;50:77–80.
Article
CAS
PubMed
Google Scholar
Hunt M, Kikuchi T, Sanders M, Newbold C, Berriman M, Otto TD. REAPR: a universal tool for genome assembly evaluation. Genome Biol. 2013;14:R47.
Article
PubMed
PubMed Central
Google Scholar
Zerbino DR. Using the Velvet de novo assembler for short-read sequencing technologies. New York: Wiley Online Library; 2010.
Google Scholar
Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2010;27:578–9.
Article
PubMed
CAS
Google Scholar
Nadalin F, Vezzi F, Policriti A. GapFiller: a de novo assembly approach to fill the gap within paired reads. BMC Bioinform. 2012;13:S8.
Article
Google Scholar
Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, et al. Versatile and open software for comparing large genomes. Genome Biol. 2004;5:R12–9.
Article
PubMed
PubMed Central
Google Scholar
Assefa S, Keane TM, Otto TD, Newbold C, Berriman M. ABACAS: algorithm-based automatic contiguation of assembled sequences. Bioinformatics. 2009;25:1968–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keller O, Kollmar M, Stanke M, Waack S. A novel hybrid gene prediction method employing protein multiple sequence alignments. Bioinformatics. 2011;27:757–63.
Article
CAS
PubMed
Google Scholar
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7:562–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:31–41.
Article
CAS
Google Scholar
du Plessis L, Skunca N, Dessimoz C. The what, where, how and why of gene ontology-a primer for bioinformaticians. Brief Bioinform. 2011;12:723–35.
Article
PubMed
PubMed Central
CAS
Google Scholar
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115-5.
Article
CAS
Google Scholar
Riddiford N, Olson PD. Wnt gene loss in flatworms. Dev Genes Evol. 2011;221:187–97.
Article
CAS
PubMed
Google Scholar