Tanaka K. Photoperiodic control of diapause and climatic adaptation of the house spider, Achaearanea tepidariorum (Araneae, Theridiidae). Func Ecol. 1992;6:545–52.
Article
Google Scholar
Montgomery TJ. The development of Theridium, an Aranead, up to the stage of reversion. J Morphol. 1909;20:297–352.
Article
Google Scholar
Akiyama-Oda Y, Oda H. Early patterning of the spider embryo: a cluster of mesenchymal cells at the cumulus produces Dpp signals received by germ disc epithelial cells. Development. 2003;130:1735–47.
Article
CAS
Google Scholar
Yamazaki K, Akiyama-Oda Y, Oda H. Expression patterns of a twist-related gene in embryos of the spider Achaearanea tepidariorum reveal divergent aspects of mesoderm development in the fly and spider. Zoolog Sci. 2005;22:177–85.
Article
CAS
Google Scholar
Mittmann B, Wolff C. Embryonic development and staging of the cobweb spider Parasteatoda tepidariorum. L. Koch, 1841 (syn.: Achaearanea tepidariorum; Araneomorphae; Theridiidae). Dev Genes Evol. 2012;222:189–216.
Article
Google Scholar
Rota-Stabelli O, Daley AC, Pisani D. Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Curr Biol. 2013;23:392–8.
Article
CAS
Google Scholar
Ballesteros JA, Sharma PP. A Critical appraisal of the placement of Xiphosura (Chelicerata) with account of known sources of phylogenetic error. Syst Biol. 2019;68:896–917.
Article
Google Scholar
Akiyama-Oda Y, Oda H. Cell migration that orients the dorsoventral axis is coordinated with anteroposterior patterning mediated by Hedgehog signaling in the early spider embryo. Development. 2010;137:1263–73.
Article
CAS
Google Scholar
Oda H, Nishimura O, Hirao Y, Tarui H, Agata K, Akiyama-Oda Y. Progressive activation of Delta-Notch signaling from around the blastopore is required to set up a functional caudal lobe in the spider Achaearanea tepidariorum. Development. 2007;134:2195–205.
Article
CAS
Google Scholar
McGregor AP, Pechmann M, Schwager EE, Feitosa NM, Kruck S, Aranda M, Damen WGM. Wnt8 is required for growth-zone establishment and development of opisthosomal segments in a spider. Curr Biol. 2008;18:1619–23.
Article
CAS
Google Scholar
Kanayama M, Akiyama-Oda Y, Nishimura O, Tarui H, Agata K, Oda H. Travelling and splitting of a wave of hedgehog expression involved in spider-head segmentation. Nat Commun. 2011;2:500.
Article
Google Scholar
Schönauer A, Paese CL, Hilbrant M, Leite DJ, Schwager EE, Feitosa NM, Eibner C, Damen WG, McGregor AP. The Wnt and Delta-Notch signalling pathways interact to direct pair-rule gene expression via caudal during segment addition in the spider Parasteatoda tepidariorum. Development. 2016;143:2455–63.
Article
Google Scholar
Hemmi N, Akiyama-Oda Y, Fujimoto K, Oda H. A quantitative study of the diversity of stripe-forming processes in an arthropod cell-based field undergoing axis formation and growth. Dev Biol. 2018;437:84–104.
Article
CAS
Google Scholar
Chipman AD, Edgecombe GD. Developing an integrated understanding of the evolution of arthropod segmentation using fossils and evo-devo. Proc Biol Sci. 2019;286:20191881.
Article
Google Scholar
Clark E, Peel AD, Akam M. Arthropod segmentation. Development. 2019;146:dev170480. https://doi.org/10.1242/dev.170480.
Article
CAS
PubMed
Google Scholar
Kanayama M, Akiyama-Oda Y, Oda H. Early embryonic development in the spider Achaearanea tepidariorum: microinjection verifies that cellularization is complete before the blastoderm stage. Arthropod Struct Dev. 2010;39:436–45.
Article
Google Scholar
Akiyama-Oda Y, Oda H. Axis specification in the spider embryo: dpp is required for radial-to-axial symmetry transformation and sog for ventral patterning. Development. 2006;133:2347–57.
Article
CAS
Google Scholar
Wieschaus E. Positional information and cell fate determination in the early Drosophila embryo. Curr Top Dev Biol. 2016;117:567–79.
Article
Google Scholar
Rahimi N, Averbukh I, Carmon S, Schejter ED, Barkai N, Shilo BZ. Dynamics of Spaetzle morphogen shuttling in the Drosophila embryo shapes gastrulation patterning. Development. 2019. https://doi.org/10.1242/dev.181487.
Article
PubMed
Google Scholar
Peel AD, Chipman AD, Akam M. Arthropod segmentation: beyond the Drosophila paradigm. Nat Rev Genet. 2005;6:905–16.
Article
CAS
Google Scholar
Irie N, Kuratani S. The developmental hourglass model: a predictor of the basic body plan? Development. 2014;141:4649–55.
Article
CAS
Google Scholar
Oda H, Iwasaki-Yokozawa S, Usui T, Akiyama-Oda Y. Experimental duplication of bilaterian body axes in spider embryos: Holm’s organizer and self-regulation of embryonic fields. Dev Genes Evol. 2019. https://doi.org/10.1007/s00427-019-00631-x.
Article
PubMed
PubMed Central
Google Scholar
Holm A. Experimentelle Untersuchungen über die Entwicklung und Entwicklungsphysiologie des Spinnenembryos. Zool BiDr Uppsala. 1952;29:293–424.
Google Scholar
Sander K. Pattern formation in longitudinal halves of leaf hopper eggs (Homoptera) and some remarks on the definition of “Embryonic regulation”. Wilhelm Roux Arch Entwickl Mech Org. 1971;167:336–52.
Article
Google Scholar
Sekiguchi K, Yamamichi Y, Seshimo H, Sugita H, Itow T. Chapter VI. Developmental biology. In: Sekiguchi K, editor. Biology of horseshoe crabs. Tokyo: Seisaku Douzin Co., Ltd; 1999. p. 123–236.
Google Scholar
Sachs L, Chen YT, Drechsler A, Lynch JA, Panfilio KA, Lässig M, Berg J, Roth S. Dynamic BMP signaling polarized by Toll patterns the dorsoventral axis in a hemimetabolous insect. elife. 2015;4:e05502.
Article
Google Scholar
Moriyama Y, De Robertis EM. Embryonic regeneration by relocalization of the Spemann organizer during twinning in Xenopus. Proc Natl Acad Sci USA. 2018;115:E4815–22.
Article
CAS
Google Scholar
Schwager EE, Sharma PP, Clarke T, Leite DJ, Wierschin T, Pechmann M, Akiyama-Oda Y, Esposito L, Bechsgaard J, Bilde T, Buffry AD, Chao H, Dinh H, Doddapaneni H, Dugan S, Eibner C, Extavour CG, Funch P, Garb J, Gonzalez LB, Gonzalez VL, Griffiths-Jones S, Han Y, Hayashi C, Hilbrant M, Hughes DST, Janssen R, Lee SL, Maeso I, Murali SC, Muzny DM, Nunes da Fonseca R, Paese CLB, Qu J, Ronshaugen M, Schomburg C, Schönauer A, Stollewerk A, Torres-Oliva M, Turetzek N, Vanthournout B, Werren JH, Wolff C, Worley KC, Bucher G, Gibbs RA, Coddington J, Oda H, Stanke M, Ayoub NA, Prpic NM, Flot JF, Posnien N, Richards S, McGregor AP. The house spider genome reveals an ancient whole-genome duplication during arachnid evolution. BMC Biol. 2017;15:62.
Article
Google Scholar
Leite DJ, Ninova M, Hilbrant M, Arif S, Griffiths-Jones S, Ronshaugen M, McGregor AP. Pervasive microRNA duplication in chelicerates: insights from the embryonic microRNA repertoire of the spider Parasteatoda tepidariorum. Genome Biol Evol. 2016;8:2133–44.
Article
CAS
Google Scholar
Leite DJ, Baudouin-Gonzalez L, Iwasaki-Yokozawa S, Lozano-Fernandez J, Turetzek N, Akiyama-Oda Y, Prpic NM, Pisani D, Oda H, Sharma PP, McGregor AP. Homeobox gene duplication and divergence in arachnids. Mol Biol Evol. 2018;35:2240–53.
Article
CAS
Google Scholar
Pechmann M, Khadjeh S, Sprenger F, Prpic NM. Patterning mechanisms and morphological diversity of spider appendages and their importance for spider evolution. Arthropod Struct Dev. 2010;39:453–67.
Article
Google Scholar
Clarke TH, Garb JE, Hayashi CY, Arensburger P, Ayoub NA. Spider transcriptomes identify ancient large-scale gene duplication event potentially important in silk gland evolution. Genome Biol Evol. 2015;7:1856–70.
Article
CAS
Google Scholar
Farley RD. Book lung development in embryos of the cobweb spider, Parasteatoda tepidariorum C. L. Koch, 1841 (Araneomorphae, Theridiidae). Arthropod Struct Dev. 2016;45:562–84.
Article
Google Scholar
Garb JE, Sharma PP, Ayoub NA. Recent progress and prospects for advancing arachnid genomics. Curr Opin Insect Sci. 2018;25:51–7.
Article
Google Scholar
Pechmann M, Benton MA, Kenny NJ, Posnien N, Roth S. A novel role for Ets4 in axis specification and cell migration in the spider Parasteatoda tepidariorum. Elife. 2017;6:e27590.
Article
Google Scholar
Akiyama-Oda Y, Oda H. Multi-color FISH facilitates analysis of cell-type diversification and developmental gene regulation in the Parasteatoda spider embryo. Dev Growth Differ. 2016;58:215–24.
Article
CAS
Google Scholar
Schwager EE, Meng Y, Extavour CG. vasa and piwi are required for mitotic integrity in early embryogenesis in the spider Parasteatoda tepidariorum. Dev Biol. 2015;402:276–90.
Article
CAS
Google Scholar
Sasaki M, Akiyama-Oda Y, Oda H. Evolutionary origin of type IV classical cadherins in arthropods. BMC Evol Biol. 2017;17:142.
Article
Google Scholar
Posnien N, Zeng V, Schwager EE, Pechmann M, Hilbrant M, Keefe JD, Damen WG, Prpic NM, McGregor AP, Extavour CG. A comprehensive reference transcriptome resource for the common house spider Parasteatoda tepidariorum. PLoS ONE. 2014;9:e104885.
Article
Google Scholar
Kono N, Nakamura H, Ito Y, Tomita M, Arakawa K. Evaluation of the impact of RNA preservation methods of spiders for de novo transcriptome assembly. Mol Ecol Resour. 2016;16:662–72.
Article
CAS
Google Scholar
Iwasaki-Yokozawa S, Akiyama-Oda Y, Oda H. Genome-scale embryonic developmental profile of gene expression in the common house spider Parasteatoda tepidariorum. Data Brief. 2018;19:865–7.
Article
Google Scholar
Zeng V, Extavour CG. ASGARD: an open-access database of annotated transcriptomes for emerging model arthropod species. Database. 2012;2012:bas048.
Article
Google Scholar