Colleye O, Iwata E, Parmentier E. Clownfishes. In: Frédérich B, Parmentier E, editors. Biology of damselfishes. Boca Raton: CRC Press; 2016. p. 246–66.
Google Scholar
Feeney WE, Brooker RM. Anemonefishes. Curr Biol. 2017;27:R6–R8.
Article
CAS
PubMed
Google Scholar
Litsios G, Sims CA, Wüest RO, et al. Mutualism with sea anemones triggered the adaptive radiation of clownfishes. BMC Evol Biol. 2012;12:1.
Article
Google Scholar
Marcionetti A, Rossier V, Roux N, et al. Insights into the genomics of clownfish adaptive radiation: genetic basis of the mutualism with sea anemones. Genome Biol Evol. 2019;11:869–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elliott JK, Mariscal RN. Coexistence of nine anemonefish species: differential host and habitat utilization, size and recruitment. Mar Biol. 2001;138:23–36.
Article
Google Scholar
Fautin DG, Allen GR. Anemonefishes and their host sea anemones: a guide for aquarists and divers. Perth: Western Australian Museum; 1997.
Google Scholar
Buston P. Social hierarchies: size and growth modification in clownfish. Nature. 2003;424:145–6.
Article
CAS
PubMed
Google Scholar
Buston PM, Elith J. Determinants of reproductive success in dominant pairs of clownfish: a boosted regression tree analysis: determinants of reproductive success. J Anim Ecol. 2011;80:528–38.
Article
PubMed
Google Scholar
Green BS, McCormick MI. O2 replenishment to fish nests: males adjust brood care to ambient conditions and brood development. Behav Ecol. 2005;16:389–97.
Article
Google Scholar
Madhu K, Madhu R, Krishnan L, et al. Spawning and larval rearing of Amphiprion ocellaris under captive condition. Mar Fish Inf Serv Tech Ext Ser. 2006;188:1–5.
Google Scholar
Ghosh S, Kumar TTA, Balasubramanian T. Determining the level of parental care relating fanning behavior of five species of clownfishes in captivity. Indian J Geo-Mar Sci. 2012;41:430–41.
Google Scholar
Moyer T, Bell LJ. Reproductive behavior of the Anemonefish Amphiprion clarkii at Miyake-Jima, Japan. Jpn J Ichthyol. 1976;23:23–322.
Google Scholar
Barth P, Berenshtein I, Besson M, et al. From the ocean to a reef habitat: how do the larvae of coral reef fishes find their way home. Vie Milieu-Life Environ. 2015;95:91–100.
Google Scholar
Militz TA, Foale S. The, “Nemo Effect”: perception and reality of finding nemo’s impact on marine aquarium fisheries. Fish Fish. 2017;18:596–606.
Article
Google Scholar
Leis JM, Carson-Ewart B. The larvae of indo-pacific coastal fishes: an indentification guide to marine fish larvae. Leiden: Fauna Malesiana; 2000.
Google Scholar
Avella MA, Olivotto I, Gioacchini G, Maradonna F, Carnevali O. The role of fatty acids enrichments in the larviculture of false percula clownfish Amphiprion ocellaris. Aquaculture. 2007;273:87–95.
Article
CAS
Google Scholar
DeAngelis RS, Rhodes JS. Sex Differences in Steroid Hormones and Parental Effort across the Breeding Cycle in Amphiprion ocellaris. Copeia. 2016;104:586–93.
Article
Google Scholar
Callan CK. Assessment of the flame angelfish (Centropyge loriculus) as a model species in studies on egg and larval quality in marine fishes. 2007. https://digitalcommons.library.umaine.edu/etd/126/. Accessed 5 Oct 2017.
Edwards TM, Miller HD, Guillette LJ. Water quality influences reproduction in female mosquitofish (Gambusia holbrooki) from eight florida springs. Environ Health Perspect. 2005;114:69–75.
Article
PubMed Central
Google Scholar
Collingwood C. Note on the existence of gigantic sea-anemones in the China sea, containing within them quasi-parisitc fish. Ann Mag Nat Hist. 1868;4(31):33.
Google Scholar
Nedosyko AM, Young JE, Edwards JW, et al. Searching for a toxic key to unlock the mystery of anemonefish and anemone symbiosis. PLoS ONE. 2014;9:e98449.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nguyen HTT, Dang BT, Glenner H, et al. Cophylogenetic analysis of the relationship between anemonefish Amphiprion (Perciformes: Pomacentridae) and their symbiotic host anemones (Anthozoa: Actiniaria). Mar Biol Res. 2020;16:117–33.
Article
Google Scholar
Titus BM, Benedict C, Laroche R, et al. Phylogenetic relationships among the clownfish-hosting sea anemones. Mol Phylogenet Evol. 2019;139:106526.
Article
PubMed
Google Scholar
Abdullah NS, Saad S. Rapid detecion of N-Acetylneuraminic acid from false clownfish using HPLC-FLD for symbiosis to host sea anemone. Asian J Appl Sci. 2015;3:858–93.
Google Scholar
Balamurugan J, Kumar TTA, Kannan R, et al. Acclimation behaviour and bio-chemical changes during anemonefish (Amphiprion sebae) and sea anemone (Stichodactyla haddoni) symbiosis. Symbiosis. 2014;64:127–38.
Article
CAS
Google Scholar
Mebs D. Chemical biology of the mutualistic relationships of sea anemones with fish and crustaceans. Toxicon. 2009;54:1071–4.
Article
CAS
PubMed
Google Scholar
Pratte ZA, Patin NV, McWhirt ME, et al. Association with a sea anemone alters the skin microbiome of clownfish. Coral Reefs. 2018;37:1119–25.
Article
Google Scholar
Roux N, Lami R, Salis P, et al. Sea anemone and clownfish microbiota diversity and variation during the initial steps of symbiosis. Sci Rep. 2019;9:19491.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murata M, Miyagawa-Koshima K, Nakanishi K. Characterization of compounds that induce symbiosis between sea anemone and anemone fish. Science. 1986;234:585–7.
Article
CAS
PubMed
Google Scholar
Depczynski M, Bellwood DR. Shortest recorded vertebrate lifespan found in a coral reef fish. Curr Biol. 2005;15:R288–R289289.
Article
CAS
PubMed
Google Scholar
Vrtílek M, Žák J, Polačik M, et al. Longitudinal demographic study of wild populations of African annual killifish. Sci Rep. 2018;8:4774.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nielsen J, Hedeholm R, Heinemeier J, et al. Eye lens radiocarbon reveals centuries of longevity in Greenland shark (Somniosus microcephalus). Science. 2016;353:702–4.
Article
CAS
PubMed
Google Scholar
Dulčić J, Kraljević M. Age, growth and mortality of damselfish (Chromis chromis L) in the eastern middle Adriatic. Fish Res. 1995;22:255–64.
Article
Google Scholar
Buston PM, García MB. An extraordinary life span estimate for the clown anemonefish Amphiprion percula. J Fish Biol. 2007;70:1710–9.
Article
Google Scholar
Sahm A, Almaida-Pagán P, Bens M, et al. Analysis of the coding sequences of clownfish reveals molecular convergence in the evolution of lifespan. BMC Evol Biol. 2019;19:89.
Article
PubMed
PubMed Central
Google Scholar
Liu H, Todd EV, Lokman PM, et al. Sexual plasticity: a fishy tale. Mol Reprod Dev. 2017;84:171–94.
Article
CAS
PubMed
Google Scholar
Ortega-Recalde O, Goikoetxea A, Hore TA, et al. The Genetics and Epigenetics of Sex Change in Fish. Annu Rev Anim Biosci. 2020;8:47–69.
Article
PubMed
Google Scholar
Todd EV, Liu H, Muncaster S, et al. Bending Genders: The Biology of Natural Sex Change in Fish. Sex Dev. 2016;10:223–41.
Article
CAS
PubMed
Google Scholar
Casas L, Saborido-Rey F, Ryu T, et al. Sex change in clownfish: molecular insights from transcriptome analysis. Sci Rep. 2016;6:35461.
Article
CAS
PubMed
PubMed Central
Google Scholar
An KW, Lee J, Choi CY. Expression of three gonadotropin subunits and gonadotropin receptor mRNA during male-to-female sex change in the cinnamon clownfish, Amphiprion melanopus. Comp Biochem Physiol A Mol Integr Physiol. 2010;156:407–15.
Article
PubMed
CAS
Google Scholar
Dodd LD, Nowak E, Lange D, et al. Active feminization of the preoptic area occurs independently of the gonads in Amphiprion ocellaris. Horm Behav. 2019;112:65–766.
Article
PubMed
Google Scholar
Kim D-H, Brunt J, Austin B. Microbial diversity of intestinal contents and mucus in rainbow trout (Oncorhynchus mykiss). J Appl Microbiol. 2007;102:1654–64.
Article
CAS
PubMed
Google Scholar
Zhang Y, Zhang H, Wang J, et al. Molecular characterization and expression patterns of glucocorticoid receptor (GR) genes in protandrous hermaphroditic yellowtail clownfish Amphiprion clarkii. Gene. 2020;745:144651.
Article
CAS
PubMed
Google Scholar
Miura S, Kobayashi Y, Bhandari RK, et al. Estrogen favors the differentiation of ovarian tissues in the ambisexual gonads of anemonefish Amphiprion clarkii. J Exp Zool Part Ecol Genet Physiol. 2013;319:560–8.
Article
CAS
Google Scholar
Patterson LB, Parichy DM. Zebrafish Pigment Pattern Formation: Insights into the Development and Evolution of Adult Form. Annu Rev Genet. 2019. https://doi.org/10.1146/annurev-genet-112618-043741Epub ahead of print 11 September 2019.
Article
PubMed
Google Scholar
Salis P, Lorin T, Laudet V, et al. Magic traits in magic fish: understanding color pattern evolution using reef fish. Trends Genet. 2019;35:265–78.
Article
CAS
PubMed
Google Scholar
Salis P, Roux N, Soulat O, et al. Ontogenetic and phylogenetic simplification during white stripe evolution in clownfishes. BMC Biol. 2018;16:90.
Article
PubMed
PubMed Central
Google Scholar
McMenamin SK, Bain EJ, McCann AE, et al. Thyroid hormone-dependent adult pigment cell lineage and pattern in zebrafish. Science. 2014;345:1358–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saunders LM, Mishra AK, Aman AJ, et al. Thyroid hormone regulates distinct paths to maturation in pigment cell lineages. eLife. 2019;8:e45181.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holzer G, Besson M, Lambert A, et al. Fish larval recruitment to reefs is a thyroid hormone-mediated metamorphosis sensitive to the pesticide chlorpyrifos. eLife. 2017;6:1–22.
Article
Google Scholar
Hodge JR, Santini F, Wainwright PC. Colour dimorphism in labrid fishes as an adaptation to life on coral reefs. Proc R Soc B Biol Sci. 2020;287:20200167.
Article
CAS
Google Scholar
Hattori A, Yanagisawa Y. Life-history pathways in relation to gonadal sex differentiation in the anemonefish, Amphiprion clarkii, in temperate waters of Japan. Environ Biol Fishes. 1991;31:139–55.
Article
Google Scholar
Gilbert SF, Bosch TCG, Ledón-Rettig C. Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents. Nat Rev Genet. 2015;16:611–22.
Article
CAS
PubMed
Google Scholar
Militz TA, McCormick MI, Schoeman DS, et al. Frequency and distribution of melanistic morphs in coexisting population of nine clownfish species in Papua New Guinea. Mar Biol. 2016;163:200.
Article
Google Scholar
Wilkins MR, Seddon N, Safran RJ. Evolutionary divergence in acoustic signals: causes and consequences. Trends Ecol Evol. 2013;28:156–66.
Article
PubMed
Google Scholar
Ladich F, Winkler H. Acoustic communication in terrestrial and aquatic vertebrates. J Exp Biol. 2017;220:2306–17.
Article
PubMed
Google Scholar
Colleye O, Vandewalle P, Lanterbecq D, et al. Interspecific variation of calls in clownfishes: degree of similarity in closely related species. BMC Evol Biol. 2011;11:365.
Article
PubMed
PubMed Central
Google Scholar
Parmentier E, Colleye O, Fine ML, et al. Sound production in the clownfish Amphiprion clarkii. Science. 2007;316:1006–1006.
Article
CAS
PubMed
Google Scholar
Rueger T, Barbasch TA, Wong MYL, et al. Reproductive control via the threat of eviction in the clown anemonefish. Proc R Soc B Biol Sci. 2018;285:20181295.
Article
Google Scholar
Frisch AJ, Rizzari JR, Munkres KP, et al. Anemonefish depletion reduces survival, growth, reproduction and fishery productivity of mutualistic anemone–anemonefish colonies. Coral Reefs. 2016;35:375–86.
Article
Google Scholar
Hirose Y. Patterns of pair formation in protandrous anemonefishes, Amphiprion clarkii, A. frenatus and A. perideraion, on coral reefs of Okinawa, Japan. Environ Biol Fishes. 1995;43:153–61.
Article
Google Scholar
Planes S, Jones GP, Thorrold SR. Larval dispersal connects fish populations in a network of marine protected areas. Proc Natl Acad Sci. 2009;106:5693–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salles OC, Maynard JA, Joannides M, et al. Coral reef fish populations can persist without immigration. Proc R Soc B Biol Sci. 2015;282:20151311.
Article
CAS
Google Scholar
Salles OC, Pujol B, Maynard JA, et al. First genealogy for a wild marine fish population reveals multigenerational philopatry. Proc Natl Acad Sci. 2016;113:13245–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dixson DL, Jones GP, Munday PL, et al. Experimental evaluation of imprinting and the role innate preference plays in habitat selection in a coral reef fish. Oecologia. 2014;174:99–107.
Article
PubMed
Google Scholar
Scott A, Dixson DL. Reef fishes can recognize bleached habitat during settlement: sea anemone bleaching alters anemonefish host selection. Proc R Soc B Biol Sci. 2016;283:20152694.
Article
CAS
Google Scholar
MacRae CA, Peterson RT. Zebrafish as tools for drug discovery. Nat Rev Drug Discov. 2015;14:721–31.
Article
CAS
PubMed
Google Scholar
Fadeev A, Krauss J, Singh AP, et al. Zebrafish Leucocyte tyrosine kinase controls iridophore establishment, proliferation and survival. Pigment Cell Melanoma Res. 2016;29:284–96.
Article
CAS
PubMed
Google Scholar
Salis P, Lorin T, Lewis V, et al. Developmental and comparative transcriptomic identification of iridophore contribution to white barring in clownfish. Pigment Cell Melanoma Res. 2019;32:391–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghosh J, Wilson RW, Kudoh T. Normal development of the tomato clownfish Amphiprion frenatus : live imaging and in situ hybridization analyses of mesodermal and neurectodermal development. J Fish Biol. 2009;75:2287–98.
Article
CAS
PubMed
Google Scholar
Kobayashi Y, Horiguchi R, Miura S, et al. Sex- and tissue-specific expression of P450 aromatase (cyp19a1a) in the yellowtail clownfish, Amphiprion clarkii. Comp Biochem Physiol A Mol Integr Physiol. 2010;155:237–44.
Article
PubMed
CAS
Google Scholar
Stieb SM, de Busserolles F, Carleton KL, et al. A detailed investigation of the visual system and visual ecology of the Barrier Reef anemonefish Amphiprion akindynos. Sci Rep. 2019;9:1–14.
Article
CAS
Google Scholar
Besseau L, Bruslé-Sicard S. Plasticity of gonad development in hermaphroditic sparids: ovotestis ontogeny in a protandric species Lithognathus mormyrus. Environ Biol Fishes. 1995;43:255–67.
Article
Google Scholar
Arvedlund M, Munday PL, Takemura A. The morphology and ultrastructure of the peripheral olfactory organ in newly metamorphosed coral-dwelling gobies, Paragobiodon xanthosomus Bleeker (Gobiidae, Teleostei). Tissue Cell. 2007;39:335–42.
Article
CAS
PubMed
Google Scholar
Roux N, Salis P, Lambert A, et al. Staging and normal table of postembryonic development of the clownfish (Amphiprion ocellaris). Dev Dyn. 2019;248:545–68.
Article
PubMed
PubMed Central
Google Scholar
Toews DPL, Hofmeister NR, Taylor SA. The evolution and genetics of carotenoid processing in animals. Trends Genet. 2017;33:171–82.
Article
CAS
PubMed
Google Scholar
Litsios G, Salamin N. Hybridisation and diversification in the adaptive radiation of clownfishes. BMC Evol Biol. 2014;14:245.
Article
PubMed
PubMed Central
Google Scholar
Gainsford A, Jones GP, Gardner MG, et al. Characterisation and cross-amplification of 42 microsatellite markers in two Amphiprion species (Pomacentridae) and a natural hybrid anemonefish to inform genetic structure within a hybrid zone. Mol Biol Rep. 2020;47:1521–5.
Article
CAS
PubMed
Google Scholar
Madhu R, Madhu K, Retheesh T. Life history pathways in false clown Amphiprion ocellaris Cuvier, 1830: a journey from egg to adult under captive condition. J Mar Biol Assoc India. 2012;54:77–90.
Google Scholar
Olivotto I, Clownfish GB. Clownfish. In: Calado R, Olivotto I, Oliver MP, et al., editors. Marine ornamental species aquaculture. Hoboken: Wiley; 2017. p. 177–199.
Chapter
Google Scholar
Tan MH, Austin CM, Hammer MP, et al. Finding Nemo: hybrid assembly with Oxford Nanopore and Illumina reads greatly improves the clownfish (Amphiprion ocellaris) genome assembly. GigaScience. 2018;7(3):1–6.
Article
PubMed
CAS
Google Scholar
Lehmann R, Lightfoot DJ, Schunter C, et al. Finding Nemo's Genes: A chromosome-scale reference assembly of the genome of the orange clownfish Amphiprion percula. Mol Ecol Resour. 2019;19:570–85.
Article
CAS
PubMed
Google Scholar
Marcionetti A, Rossier V, Bertrand JAM, et al. First draft genome of an iconic clownfish species (Amphiprion frenatus). Mol Ecol Resour. 2018;18:1092–101.
Article
CAS
Google Scholar
Sun Y, Huang Y, Li X, et al. Fish-T1K (Transcriptomes of 1000 Fishes) Project: large-scale transcriptome data for fish evolution studies. GigaScience. 2016;5:18.
Article
PubMed
PubMed Central
CAS
Google Scholar