Cameron CB, Perez M. Spengelidae (Hemichordate: Enteropnuesta) from the Eastern Pacific including a new species, Schizocardium californicum, from California. Zootaxa. 2012;3569:79–88.
Article
Google Scholar
Jäegersten G. Evolution of the metazoan life cycle; a comprehensive theory. New York: Academic Press; 1972.
Google Scholar
Nielsen C, Nørrevang A. The trochaea theory: an example of life cycle phylogeny. In: Conway Morris S, George JD, Gibson R, Platt HM, editors. The origins and relationships of lower invertebrates, vol. The systematics association special volume; 28. Oxford: Oxford University Press; 1985. p. 28–41.
Google Scholar
Raff RA. Origins of metazoan body plans: the larval revolution. Anim Evol. 2009;43:1473–9.
Google Scholar
Hyman LH. The invertebrates, vol. 4. New York: McGraw-Hill; 1955.
Google Scholar
Nielsen C. Animal evolution: interrelationships of the living Phyla. 3rd ed. Oxford: Oxford University Press; 2012.
Google Scholar
Gilbert L, Frieden E, editors. Metamorphosis, a problem in developmental biology. 2nd ed. New York: Plenum Press; 1981.
Google Scholar
McEdward LR, Janies DA. Life cycle evolution in asteroids: what is a larva? Biol Bull. 1993;184(3):255–68.
Article
CAS
PubMed
Google Scholar
Hadfield MG, Carpizo-Ituarte EJ, del Carmen K, Nedved BT. Metamorphic competence, a major adaptive convergence in marine invertebrate larvae. Am Zool. 2001;41(5):1123–31.
Google Scholar
Strathmann RR. Hypotheses on the origins of marine larvae. Annu Rev Ecol Syst. 1993;24(1):89–117.
Article
Google Scholar
Bishop CD, Erezyilmaz DF, Flatt T, Georgiou CD, Hadfield MG, Heyland A, et al. What is metamorphosis? Integr Comp Biol. 2006;46(6):655–61.
Article
CAS
PubMed
Google Scholar
Emlet RB. Echinoderm larval ecology viewed from the egg. Echinoderm Stud. 1987;2:55–136.
Google Scholar
Strathmann RR. Feeding and nonfeeding larval development and life-history evolution in marine invertebrates. Annu Rev Ecol Syst. 1985;16(1):339–61.
Article
Google Scholar
Damen P, Dictus WJ. Cell lineage of the prototroch of Patella vulgata (Gastropoda, Mollusca). Dev Biol. 1994;162(2):364–83.
Article
CAS
PubMed
Google Scholar
Page LR. Molluscan larvae: pelagic juveniles or slowly metamorphosing larvae? Biol Bull. 2009;216(3):216–25.
Article
PubMed
Google Scholar
Okazaki K. Normal development to metamorphosis. In: Czihak G, editor. The sea Urchin Embryo. Berlin: Springer; 1975. p. 177–232.
Chapter
Google Scholar
Peterson KJ, Cameron RA, Davidson EH. Set-aside cells in maximal indirect development: evolutionary and developmental significance. BioEssays. 1997;19(7):623–31.
Article
CAS
PubMed
Google Scholar
Maslakova SA. Development to metamorphosis of the nemertean pilidium larva. Front Zool. 2010;7(1):30.
Article
PubMed
PubMed Central
Google Scholar
Nielsen C. Trochophora larvae: cell-lineages, ciliary bands, and body regions. 1. Annelida and Mollusca. J Exp Zool. 2004;302B(1):35–68.
Article
Google Scholar
van der Horst CJ. Hemichordata. In: Klassen und Ordnungen des Tierreichs wissenschaftlich dargestellt. Akademische Verlag; 1939. (Wort und Bild; vol. 4).
Hyman LH. The invertebrates: smaller coelomate groups, Chaetognatha, Hemichordata, Pogonophora, Phoronida, Ectoprocta, Brachipoda, Sipunculida, the coelomate Bilateria, vol. 5. New York: McGraw-Hill; 1959.
Google Scholar
Cameron CB. A phylogeny of the hemichordates based on morphological characters. Can J Zool. 2005;83(1):196–215.
Article
Google Scholar
Cannon JT, Rychel AL, Eccleston H, Halanych KM, Swalla BJ. Molecular phylogeny of hemichordata, with updated status of deep-sea enteropneusts. Mol Phylogenet Evol. 2009;52(1):17–24.
Article
CAS
PubMed
Google Scholar
Bromham LD, Degnan BM. Hemichordates and deuterostome evolution: robust molecular phylogenetic support for a hemichordate + echinoderm clade. Evol Dev. 1999;1(3):166–71.
Article
CAS
PubMed
Google Scholar
Cameron CB, Garey JR, Swalla BJ. Evolution of the chordate body plan: New insights from phylogenetic analyses of deuterostome phyla. Proc Natl Acad Sci. 2000;97(9):4469–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Furlong RF, Holland PH. Bayesian phylogenetic analysis supports monophyly of Ambulacraria and of cyclostomes. Zool Sci. 2002;19(5):593–9.
Article
Google Scholar
Cannon JT, Kocot KM, Waits DS, Weese DA, Swalla BJ, Santos SR, et al. Phylogenomic resolution of the hemichordate and echinoderm clade. Curr Biol. 2014;24(23):2827–32.
Article
CAS
PubMed
Google Scholar
Kapli P, Natsidis P, Leite DJ, Fursman M, Jeffrie N, Rahman IA, et al. Lack of support for deuterostomia prompts reinterpretation of the first bilateria. Sci Adv. 2021. https://doi.org/10.1126/sciadv.abe2741.
Article
PubMed
PubMed Central
Google Scholar
Morgan TH. The development of Balanoglossus. J Morphol. 1894;9(1):1–86.
Article
Google Scholar
Agassiz A. The History of Balanoglossus and Tornaria. Mem Am Acad Arts Sci. 1873;9(2):421–36.
Google Scholar
Lin CY, Tung CH, Yu JK, Su YH. Reproductive periodicity, spawning induction, and larval metamorphosis of the hemichordate acorn worm Ptychodera flava: Animal Resources for the Acorn Worm Ptychodera Flava. J Exp Zool B Mol Dev Evol. 2016;326(1):47–60.
Article
PubMed
Google Scholar
Hadfield MG. Hemichordata. In: Reproduction of Marine Invertebrates [Internet]. Elsevier; 1975 [cited 2022 Mar 29]. p. 185–240. https://linkinghub.elsevier.com/retrieve/pii/B9780122825026500121.
Urata M, Yamaguchi M. The development of the enteropneust hemichordate Balanoglossus misakiensis Kuwano. Zool Sci. 2004;21(5):533–40.
Article
Google Scholar
Miyamoto N, Saito Y. Morphology and development of a new species of Balanoglossus (Hemichordata: Enteropneusta: Ptychoderidae) from Shimoda, Japan. Zool Sci. 2007;24(12):1278–85.
Article
Google Scholar
Gonzalez P, Jiang JZ, Lowe CJ. The development and metamorphosis of the indirect developing acorn worm Schizocardium californicum (Enteropneusta: Spengelidae). Front Zool. 2018. https://doi.org/10.1186/s12983-018-0270-0.
Article
PubMed
PubMed Central
Google Scholar
Morgan TH. The growth and metamorphosis of Tornaria. J Morphol. 1891;5:407–58.
Article
Google Scholar
Harada Y, Okai N, Taguchi S, Tagawa K, Humphreys T, Satoh N. Developmental expression of the hemichordate otx ortholog. Mech Dev. 2000;91(1–2):337–9.
Article
CAS
PubMed
Google Scholar
Harada Y, Okai N, Taguchi S, Shoguchi E, Tagawa K, Humphreys T, et al. Embryonic Expression of a Hemichordate distal-less Gene. Zool Sci. 2001;18(1):57–61.
Article
CAS
Google Scholar
Harada Y, Shoguchi E, Taguchi S, Okai N, Humphreys T, Tagawa K, et al. Conserved expression pattern of BMP-2/4 in hemichordate acorn worm and echinoderm sea cucumber embryos. Zool Sci. 2002;19(10):1113–21.
Article
CAS
Google Scholar
Ogasawara M, Wada H, Peters H, Satoh N. Developmental expression of Pax1/9 genes in urochordate and hemichordate gills: insight into function and evolution of the pharyngeal epithelium. Dev Camb Engl. 1999;126(11):2539–50.
CAS
Google Scholar
Okai N, Tagawa K, Humphreys T, Satoh N, Ogasawara M. Characterization of gill-specific genes of the acorn worm Ptychodera flava. Dev Dyn. 2000;217(3):309–19.
Article
CAS
PubMed
Google Scholar
Peterson KJ, Cameron RA, Tagawa K, Satoh N, Davidson EH. A comparative molecular approach to mesodermal patterning in basal deuterostomes: the expression pattern of Brachyury in the enteropneust hemichordate Ptychodera flava. Development. 1999;126(1):85–95.
Article
CAS
PubMed
Google Scholar
Tagawa K, Humphreys T, Satoh N. Novel pattern of Brachyury gene expression in hemichordate embryos. Mech Dev. 1998;75(1–2):139–43.
Article
CAS
PubMed
Google Scholar
Tagawa K, Humphreys T, Satoh N. T-brain expression in the apical organ of hemichordate tornaria larvae suggests its evolutionary link to the vertebrate forebrain. J Exp Zool. 2000;31:23–31.
Article
Google Scholar
Tagawa K, Satoh N, Humphreys T. Molecular studies of hemichordate development: a key to understanding the evolution of bilateral animals and chordates. Evol Dev. 2001;3(6):443–54.
Article
CAS
PubMed
Google Scholar
Taguchi S, Tagawa K, Humphreys T, Nishino A, Satoh N, Harada Y. Characterization of a hemichordate fork head/HNF-3 gene expression. Dev Genes Evol. 2000;210(1):11–7.
Article
CAS
PubMed
Google Scholar
Taguchi S, Tagawa K, Humphreys T, Satoh N. Group B sox genes that contribute to specification of the vertebrate brain are expressed in the apical organ and ciliary bands of hemichordate larvae. Zool Sci. 2002;19(1):57–66.
Article
CAS
Google Scholar
Takacs CM, Moy VN, Peterson KJ. Testing putative hemichordate homologues of the chordate dorsal nervous system and endostyle: expression of NK2.1 (TTF-1) in the acorn worm Ptychodera flava (Hemichordata, Ptychoderidae). Evol Dev. 2002;4(6):405–17.
Article
CAS
PubMed
Google Scholar
Röttinger E, Martindale MQ. Ventralization of an indirect developing hemichordate by NiCl2 suggests a conserved mechanism of dorso-ventral (D/V) patterning in Ambulacraria (hemichordates and echinoderms). Dev Biol. 2011;354(1):173–90.
Article
CAS
PubMed
Google Scholar
Röttinger E, DuBuc TQ, Amiel AR, Martindale MQ. Nodal signaling is required for mesodermal and ventral but not for dorsal fates in the indirect developing hemichordate Ptychodera flava. Biol Open. 2015;4(7):830–42.
Article
PubMed
PubMed Central
Google Scholar
Kaul-Strehlow S, Urata M, Praher D, Wanninger A. Neuronal patterning of the tubular collar cord is highly conserved among enteropneusts but dissimilar to the chordate neural tube. Sci Rep. 2017;7(1):7003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gonzalez P, Uhlinger KR, Lowe CJ. The adult body plan of indirect developing hemichordates develops by adding a hox-patterned trunk to an anterior larval territory. Curr Biol. 2016;27(1):1–9.
Google Scholar
Fan TP, Ting HC, Yu JK, Su YH. Reiterative use of FGF signaling in mesoderm development during embryogenesis and metamorphosis in the hemichordate Ptychodera flava. BMC Evol Biol. 2018;18(1):120.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salic A, Mitchison TJ. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci. 2008;105(7):2415.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garstang W. Spolia Bermudiana. II. The ciliary feeding mechanism of Tornaria. J Cell Sci. 1939;81:347–66.
Article
Google Scholar
Lacalli TC, Gilmour THJ. Locomotory and feeding effectors of the tornaria larva of Balanoglossus biminiensis: Tornaria structure and feeding. Acta Zool. 2002;82(2):117–26.
Article
Google Scholar
Strathmann R, Bonar D. Ciliary feeding of tornaria larvae of Ptychodera flava (Hemichordata: Enteropneusta). Mar Biol. 1976;34(4):317–24.
Article
Google Scholar
Bird A. Comparative analysis of cell proliferation patterns in ciliated planktotrophic larvae of marine invertebrates (Master of Science). University of Oregon; 2012.
Lacalli TC. Apical organs, epithelial domains, and the origin of the chordate central nervous system. Am Zool. 1994;34(4):533–41.
Article
Google Scholar
Marlow H, Tosches MA, Tomer R, Steinmetz PR, Lauri A, Larsson T, et al. Larval body patterning and apical organs are conserved in animal evolution. BMC Biol. 2014;12(1):7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakajima Y, Humphreys T, Kaneko H, Tagawa K. Development and Neural Organization of the Tornaria Larva of the Hawaiian Hemichordate, Ptychodera flava. Zool Sci. 2004;21(1):69–78.
Article
Google Scholar
Nielsen C. Larval and adult brains. Evol Dev. 2005;7(5):483–9.
Article
PubMed
Google Scholar
Ruppert EE, Balser EJ. Nephridia in the larvae of hemichordates and echinoderms. Biol Bull. 1986;171(1):188–96.
Article
Google Scholar
Gąsiorowski L, Andrikou C, Janssen R, Bump P, Budd GE, Lowe CJ, et al. Molecular evidence for a single origin of ultrafiltration-based excretory organs. Curr Biol. 2021;31(16):3629-3638.e2.
Article
CAS
PubMed
Google Scholar
Gilmour THJ. Feeding in tornaria larvae and the development of gill slits in enteropneust hemichordates. Can J Zool. 1982;60(12):3010–20.
Article
Google Scholar
Nielsen C, Hay-Schmidt A. Development of the enteropneust Ptychodera flava: ciliary bands and nervous system. J Morphol. 2007;268(7):551–70.
Article
PubMed
Google Scholar
Gillis JA, Fritzenwanker JH, Lowe CJ. A stem-deuterostome origin of the vertebrate pharyngeal transcriptional network. Proc R Soc B Biol Sci. 2012;279(1727):237–46.
Article
Google Scholar
Fritzenwanker JH, Uhlinger KR, Gerhart J, Silva E, Lowe CJ. Untangling posterior growth and segmentation by analyzing mechanisms of axis elongation in hemichordates. Proc Natl Acad Sci. 2019;116(17):8403–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bardeen CR, Baetjer FH. The inhibitive action of the Roentgen rays on regeneration in planarians. J Exp Zool. 1904;1(1):191–5.
Article
Google Scholar
Till JE, McCulloch EA. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961;14(2):213–22.
Article
CAS
PubMed
Google Scholar
Eisenhoffer GT, Kang H, Alvarado AS. Molecular analysis of stem cells and their descendants during cell turnover and regeneration in the planarian Schmidtea mediterranea. Cell Stem Cell. 2008;3(3):327–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Solana J, Kao D, Mihaylova Y, Jaber-Hijazi F, Malla S, Wilson R, et al. Defining the molecular profile of planarian pluripotent stem cells using a combinatorial RNA-seq, RNA interference and irradiation approach. Genome Biol. 2012;13(3):R19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wagner DE, Ho JJ, Reddien PW. Genetic regulators of a pluripotent adult stem cell system in planarians identified by RNAi and clonal analysis. Cell Stem Cell. 2012;10(3):299–311.
Article
CAS
PubMed
PubMed Central
Google Scholar
Newmark PA, Sánchez AA. Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev Biol. 2000;220(2):142–53.
Article
CAS
PubMed
Google Scholar
Baguña J, Auladell C. Regeneration and pattern formation in planarians III. Evidence that neoblasts are totipotent stem cells and the source of blastema cells. Development. 1989;86:77–86.
Article
Google Scholar
Juliano CE, Swartz SZ, Wessel GM. A conserved germline multipotency program. Development. 2010;137(24):4113–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Earnshaw WC, Cooke CA. Analysis of the distribution of the INCENPs throughout mitosis reveals the existence of a pathway of structural changes in the chromosomes during metaphase and early events in cleavage furrow formation. J Cell Sci. 1991;98(4):443–61.
Article
PubMed
Google Scholar
Fish JL, Kosodo Y, Enard W, Paabo S, Huttner WB. Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proc Natl Acad Sci. 2006;103(27):10438–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gonzalez C, Saunders RDC, Casal J, Carmena M, Ripoll P, Glover DM. Mutations at the asp locus of Drosophila lead to multiple free centrosomes in syncytial embryos, but restrict centrosome duplication in larval neuroblasts. J Cell Sci. 1990. https://doi.org/10.1242/jcs.96.4.605.
Article
PubMed
Google Scholar
Ripoll P, Pimpinelli S, Valdivia MM, Avila J. A cell division mutant of Drosophila with a functionally abnormal spindle. Cell. 1985;41(3):907–12.
Article
CAS
PubMed
Google Scholar
Stewart M, Murphy C, Fristrom JW. The recovery and preliminary characterization of x chromosome mutants affecting imaginal discs of Drosophila melanogaster. Dev Biol. 1972. https://doi.org/10.1016/0012-1606(72)90113-3.
Article
PubMed
Google Scholar
Woods DF, Bryant PJ. The discs-large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Cell. 1991;66(3):451–64.
Article
CAS
PubMed
Google Scholar
Vanden Bosch A, Raemaekers T, Denayer S, Torrekens S, Smets N, Moermans K, et al. NuSAP is essential for chromatin-induced spindle formation during early embryogenesis. J Cell Sci. 2010;123(19):3244–55.
Article
CAS
PubMed
Google Scholar
Chiquet-Ehrismann R, Orend G, Chiquet M, Tucker RP, Midwood KS. Tenascins in stem cell niches. Matrix Biol. 2014;37:112–23.
Article
CAS
PubMed
Google Scholar
Lanner F, Rossant J. The role of FGF/Erk signaling in pluripotent cells. Development. 2010;137(20):3351–60.
Article
CAS
PubMed
Google Scholar
Rebscher N, Deichmann C, Sudhop S, Fritzenwanker JH, Green S, Hassel M. Conserved intron positions in FGFR genes reflect the modular structure of FGFR and reveal stepwise addition of domains to an already complex ancestral FGFR. Dev Genes Evol. 2009;219(9–10):455–68.
Article
CAS
PubMed
Google Scholar
Green SA, Norris RP, Terasaki M, Lowe CJ. FGF signaling induces mesoderm in the hemichordate Saccoglossus kowalevskii. Development. 2013;140(5):1024–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malone CD, Brennecke J, Dus M, Stark A, McCombie WR, Sachidanandam R, et al. Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell. 2009;137(3):522–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ott KM, Nguyen T, Navarro C. The DExH box helicase domain of spindle-E Is necessary for retrotransposon silencing and axial patterning during Drosophila oogenesis. G3. 2014;4(11):2247–57.
Article
PubMed
PubMed Central
Google Scholar
Lin C, Yu J, Su Y. Evidence for BMP-mediated specification of primordial germ cells in an indirect-developing hemichordate. Evol Dev. 2021;23(1):28–45.
Article
PubMed
Google Scholar
Solovei I, Wang AS, Thanisch K, Schmidt CS, Krebs S, Zwerger M, et al. LBR and Lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell. 2013;152(3):584–98.
Article
CAS
PubMed
Google Scholar
Olins AL, Rhodes G, Welch DBM, Zwerger M, Olins DE. Lamin B receptor: multi-tasking at the nuclear envelope. Nucleus. 2010;1(1):53–70.
Article
PubMed
PubMed Central
Google Scholar
Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992;119(3):493–501.
Article
CAS
PubMed
Google Scholar
Ansari B, Coates PJ, Greenstein BD, Hall PA. In situ end-labelling detects DNA strand breaks in apoptosis and other physiological and pathological states. J Pathol. 1993;170(1):1–8.
Article
CAS
PubMed
Google Scholar
Charriaut-Marlangue C, Ben-Ari Y. A cautionary note on the use of the TUNEL stain to determine apoptosis. NeuroReport. 1995;7(1):61–4.
Article
CAS
PubMed
Google Scholar
Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed. 2001;40(11):2004–21.
Article
CAS
Google Scholar
Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed. 2002;41(14):2596–9.
Article
CAS
Google Scholar
Miyamoto N, Nakajima Y, Wada H, Saito Y. Development of the nervous system in the acorn worm Balanoglossus simodensis: insights into nervous system evolution: development of hemichordate nervous system. Evol Dev. 2010;12(4):416–24.
Article
PubMed
Google Scholar
Kaul-Strehlow S, Urata M, Minokawa T, Stach T, Wanninger A. Neurogenesis in directly and indirectly developing enteropneusts: of nets and cords. Org Divers Evol. 2015;15(2):405–22.
Article
PubMed
PubMed Central
Google Scholar
Strathmann MF. Reproduction and development of marine invertebrates of the northern Pacific coast: data and methods for the study of eggs, embryos, and larvae. Seattle: University of Washington Press; 1987.
Google Scholar
Giese AC. Reproduction of marine invertebrates. New York: Academic Press; 1974.
Google Scholar
Grant PT, Mackie AM, editors. Chemoreception in marine organisms. London: Academic Press; 1974.
Google Scholar
Wigglesworth VB. Insect physiology. 7th ed. New York: Springer; 2013.
Google Scholar
Hadfield MG. Why and how marine-invertebrate larvae metamorphose so fast. Semin Cell Dev Biol. 2000;11(6):437–43.
Article
CAS
PubMed
Google Scholar
Ritter WE. On a new balanoglossus larva from the coast of california, and its possession of an endostyle. Zool Anz. 1894;17:24–60.
Google Scholar
Mortensen T. Studies of the development and larval forms of echinoderms. Copenhagen: Bianco Lunos; 1921. p. 261.
Book
Google Scholar
Marlow H. Evolutionary development of marine larvae. In: Carrier T, Reitzel A, Heyland A, editors. Evolutionary ecology of marine invertebrate larvae. Oxford: Oxford University Press; 2017.
Google Scholar
Brambell FWR, Cole HA. The preoral ciliary organ of the enteropneusta: its occurrence, structure, and possible phylogenetic significance. Proc Zool Soc Lond. 1939;B109(2):181–93.
Article
Google Scholar
Bishop C, Hall B. Deferring development: setting aside cells for future use in development and evolution. Boca Raton: CRC Press/Taylor & Francis Group; 2020.
Google Scholar
Seaver EC, Thamm K, Hill SD. Growth patterns during segmentation in the two polychaete annelids, Capitella sp. and Hydroides elegans: comparisons at distinct life history stages. Evol Dev. 2005;7(4):312–26.
Article
PubMed
Google Scholar
Strathmann RR. Functional design in the evolution of embryos and larvae. Semin Cell Dev Biol. 2000;11(6):395–402.
Article
CAS
PubMed
Google Scholar
Arenas-Mena C. Indirect development, transdifferentiation and the macroregulatory evolution of metazoans. Philos Trans R Soc B Biol Sci. 2010;365(1540):653–69.
Article
Google Scholar
Vogt KC. Untersuchungen Über Die Entwicklungsgeschichte der Geburtshelferkröte (Alytes Obstetricans). 1842.
Estabel J, Mercer A, König N, Exbrayat J-M. Programmed cell death in Xenopus laevis spinal cord, tail and other tissues, prior to, and during, metamorphosis. Life Sci. 2003;73(25):3297–306.
Article
CAS
PubMed
Google Scholar
Okada M, Miller TC, Wen L, Shi YB. A balance of Mad and Myc expression dictates larval cell apoptosis and adult stem cell development during Xenopus intestinal metamorphosis. Cell Death Dis. 2017;8(5):e2787–810.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ishizuya-Oka A, Shi Y-B. Regulation of adult intestinal epithelial stem cell development by thyroid hormone during Xenopus laevis metamorphosis. Dev Dyn. 2007;236(12):3358–68.
Article
CAS
PubMed
Google Scholar
Meuser S, Pflüger H-J. Programmed cell death specifically eliminates one part of a locust pleuroaxillary muscle after the imaginal moult. J Exp Biol. 1998;201:2367–82.
Article
PubMed
Google Scholar
Tettamanti G, Casartelli M. Cell death during complete metamorphosis. Philos Trans R Soc B Biol Sci. 2019;374(1783):20190065.
Article
CAS
Google Scholar
Wynen H, Heyland A. Hormonal Regulation of Programmed Cell Death in Sea Urchin Metamorphosis. Front Ecol Evol. 2021;8(9): 733787.
Article
Google Scholar
Leise EM, Kempf SC, Durham NR, Gifondorwa DJ. Induction of metamorphosis in the marine gastropod Ilyanassa obsoleta: 5HT, NO and programmed cell death. Acta Biol Hung. 2004;55(1–4):293–300.
Article
CAS
PubMed
Google Scholar
Kiss T. Apoptosis and its functional significance in molluscs. Apoptosis. 2010;15(3):313–21.
Article
PubMed
Google Scholar
Roccheri MC, Tipa C, Bonaventura R, Matranga V. Physiological and induced apoptosis in sea urchin larvae undergoing metamorphosis. Int J Dev Biol. 2002;46:801–6.
PubMed
Google Scholar
Lutek K, Dhaliwal RS, Van Raay TJ, Heyland A. Sea urchin histamine receptor 1 regulates programmed cell death in larval Strongylocentrotus purpuratus. Sci Rep. 2018;8(1):4002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sato Y, Kaneko H, Negishi S, Yazaki I. Larval arm resorption proceeds concomitantly with programmed cell death during metamorphosis of the sea urchin Hemicentrotus pulcherrimus. Cell Tissue Res. 2006;326(3):851–60.
Article
PubMed
Google Scholar
Lindsten T, Ross AJ, King A, Zong W-X, Rathmell JC, Shiels HA, et al. The combined functions of proapoptotic Bcl-2 family members Bak and Bax are essential for normal development of multiple tissues. Mol Cell. 2000;6(6):1389–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lohmann I, McGinnis N, Bodmer M, McGinnis W. The Drosophila Hox gene deformed sculpts head morphology via direct regulation of the apoptosis activator reaper. Cell. 2002;110(4):457–66.
Article
CAS
PubMed
Google Scholar
Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell. 2015;147(4):742–58.
Article
CAS
Google Scholar
Chao MP, Majeti R, Weissman IL. Programmed cell removal: a new obstacle in the road to developing cancer. Nat Rev Cancer. 2012;12(1):58–67.
Article
CAS
Google Scholar
Hadfield M, Chia F, Rice M. Growth and metamorphosis of planktonic larvae of Ptychodera flava (Hemichordata: Enteropneusta). In: Hadfield M, editor. Settlement and metamorphosis of marine invertebrate larvae. New York: Elsevier; 1978. p. 247–54.
Google Scholar
Brown FD, Tiozzo S, Roux MM, Ishizuka K, Swalla BJ, De Tomaso AW. Early lineage specification of long-lived germline precursors in the colonial ascidian Botryllus schlosseri. Development. 2009;136(20):3485–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Mulder K, Kuales G, Pfister D, Willems M, Egger B, Salvenmoser W, et al. Characterization of the stem cell system of the acoel Isodiametra pulchra. BMC Dev Biol. 2009;9:69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Agata K, Nakajima E, Funayama N, Shibata N, Saito Y, Umesono Y. Two different evolutionary origins of stem cell systems and their molecular basis. Semin Cell Dev Biol. 2006;17(4):503–9.
Article
CAS
PubMed
Google Scholar
Shibata N, Hayashi T, Fukumura R, Fujii J, Kudome-Takamatsu T, Nishimura O, et al. Comprehensive gene expression analyses in pluripotent stem cells of a planarian, Dugesia japonica. Int J Dev Biol. 2012;56(1–3):93–102.
Article
CAS
PubMed
Google Scholar
Hemmrich G, Khalturin K, Boehm A-M, Puchert M, Anton-Erxleben F, Wittlieb J, et al. Molecular signatures of the three stem cell lineages in hydra and the emergence of stem cell function at the base of multicellularity. Mol Biol Evol. 2012;29(11):3267–80.
Article
CAS
PubMed
Google Scholar
Leclere L, Jager M, Barreau C, Chang P, Le Guyader H, Manuel M, et al. Maternally localized germ plasm mRNAs and germ cell/stem cell formation in the cnidarian Clytia. Dev Biol. 2012;364(2):236–48.
Article
CAS
PubMed
Google Scholar
Funayama N. The stem cell system in demosponges: Suggested involvement of two types of cells: Archeocytes (active stem cells) and choanocytes (food-entrapping flagellated cells). Dev Genes Evol. 2013;223(1–2):23–38.
Article
PubMed
Google Scholar
Solana J. Closing the circle of germline and stem cells: the Primordial Stem Cell hypothesis. EvoDevo. 2013;4(1):2.
Article
PubMed
PubMed Central
Google Scholar
Collins JJ, Wang B, Lambrus BG, Tharp ME, Iyer H, Newmark PA. Adult somatic stem cells in the human parasite Schistosoma mansoni. Nature. 2013;494(7438):476–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chia FS, Rice K. Settlement and metamorphosis of marine invertebrate larvae. In: Chia FS, editor. Symposium on settlement and metamorphosis of marine invertebrate larvae (1977: Toronto, Ont). Amsterdam: Elsevier; 1978.
Google Scholar
Emlet RB. Larval form and metamorphosis of a “primitive” sea urchin, Eucidaris thouarsi (Echinodermata: Echinoidea: Cidaroida), with implications for developmental and phylogenetic studies. Biol Bull. 1988;174(1):4–19.
Article
PubMed
Google Scholar
Davidson EH, Peterson KJ, Cameron RA. Origin of bilaterian body plans: evolution of developmental regulatory mechanisms. Science. 1995;270(5240):1319–25.
Article
CAS
PubMed
Google Scholar
Bird AM, von Dassow G, Maslakova SA. How the pilidium larva grows. EvoDevo. 2014;5(1):13.
Article
PubMed
PubMed Central
Google Scholar
Guha A, Lin L, Kornberg TB. Organ renewal and cell divisions by differentiated cells in Drosophila. Proc Natl Acad Sci. 2008;105(31):10832–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakayama-Ishimura A, Chambon J, Horie T, Satoh N, Sasakura Y. Delineating metamorphic pathways in the ascidian Ciona intestinalis. Dev Biol. 2009;326(2):357–67.
Article
CAS
PubMed
Google Scholar
Tanaka K, Truman JW. Development of the adult leg epidermis in Manduca sexta: contribution of different larval cell populations. Dev Genes Evol. 2005;215(2):78–89.
Article
PubMed
Google Scholar
Patry WL, Bubel M, Hansen C, Knowles T. Diffusion tubes: a method for the mass culture of ctenophores and other pelagic marine invertebrates. PeerJ. 2020;7(8): e8938.
Article
Google Scholar
Zhu A, Ibrahim JG, Love MI. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics. 2019;35(12):2084–92.
Article
CAS
PubMed
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:12.
Article
CAS
Google Scholar
Lowe CJ, Tagawa K, Humphreys T, Kirschner M, Gerhart J. Hemichordate embryos procurement, culture, and basic methods. In: Lowe CJ, editor. Methods in cell biology development of sea urchins, ascidians, and other invertebrate deuterostomes experimental approaches, vol. 74. Cambridge: Academic Press; 2004. p. 171–94.
Chapter
Google Scholar
Kuehn E, Clausen DS, Null RW, Metzger BM, Willis AD, Özpolat BD. Segment number threshold determines juvenile onset of germline cluster expansion in Platynereis dumerilii. J Exp Zoolog B Mol Dev Evol. 2021;58:403.
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17(8):754–5.
Article
CAS
PubMed
Google Scholar
Bruce H, Jerz G, Kelly S, McCarthy J, Pomerantz A, Senevirathne G, et al. Hybridization chain reaction (HCR). In Situ Protoc. 2021. https://doi.org/10.17504/protocols.io.bunznvf6.
Article
Google Scholar
Choi HMT, Schwarzkopf M, Fornace ME, Acharya A, Artavanis G, Stegmaier J, et al. Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. Development. 2018;145(12): dev165753.
Article
CAS
PubMed
PubMed Central
Google Scholar