Ebert D. Ecology, epidemiology and evolution of parasitism in Daphnia. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information: National Center for Biotechnology Information (US) http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Books; 2005.
Yampolsky LY. Genetic-variation in the sexual reproduction rate within a population of a cyclic parthenogen, Daphnia-magna. Evolution. 1992;46:833–7. https://doi.org/10.2307/2409651.
Article
PubMed
Google Scholar
Galimov Y, Walser B, Haag CR. Frequency and inheritance of non-male producing clones in Daphnia magna: evolution towards sex specialization in a cyclical parthenogen? J Evol Biol. 2011;24:1572–83. https://doi.org/10.1111/j.1420-9101.2011.02288.x.
Article
CAS
PubMed
Google Scholar
Tucker AE, Ackerman MS, Eads BD, Xu S, Lynch M. Population-genomic insights into the evolutionary origin and fate of obligately asexual Daphnia pulex. Proc Natl Acad Sci USA. 2013;110:15740–5. https://doi.org/10.1073/pnas.1313388110.
Article
PubMed
PubMed Central
Google Scholar
Roulin AC, Routtu J, Hall MD, Janicke T, Colson I, Haag CR, Ebert D. Local adaptation of sex induction in a facultative sexual crustacean: insights from QTL mapping and natural populations of Daphnia magna. Mol Ecol. 2013;22:3567–79. https://doi.org/10.1111/Mec.12308.
Article
CAS
PubMed
Google Scholar
Seefeldt L, Ebert D. Temperature-versus precipitation-limitation shape local temperature tolerance in a Holarctic freshwater crustacean. Proc Biol Sci. 2019. https://doi.org/10.1098/rspb.2019.0929.
Article
PubMed
PubMed Central
Google Scholar
Klüttgen B, Dülmer U, Engels M, Ratte HT. ADaM, an artificial freshwater for the culture of zooplankton. Water Res. 1994;28:743–6.
Article
Google Scholar
Routtu J, Jansen B, Colson I, De Meester L, Ebert D. The first-generation Daphnia magna linkage map. BMC Genomics. 2010. https://doi.org/10.1186/1471-2164-11-508.
Article
PubMed
PubMed Central
Google Scholar
Frisch D, Morton PK, Chowdhury PR, Culver BW, Colbourne JK, Weider LJ, Jeyasingh PD. A millennial-scale chronicle of evolutionary responses to cultural eutrophication in Daphnia. Ecol Lett. 2014;17:360–8. https://doi.org/10.1111/ele.12237.
Article
PubMed
Google Scholar
Duneau D, Altermatt F, Ferdy JB, Ben-Ami F, Ebert D. Estimation of the propensity for sexual selection in a cyclical parthenogen. bioRxiv. 2020. https://doi.org/10.1101/2020.02.05.935148.
Article
Google Scholar
De Meester L. An estimation of the heritability of phototaxis in Daphnia magna Straus. Oecologia. 1989;78:142–4.
Article
Google Scholar
Retnaningdyah C, Ebert D. Bleach solution requirement for hatching of Daphnia magna resting eggs. J Trop Life Sci. 2016;6:136–41. https://doi.org/10.11594/jtls.06.03.01.
Article
Google Scholar
Luijckx P, Fienberg H, Duneau D, Ebert D. A matching-allele model explains host resistance to parasites. Curr Biol. 2013;23:1085–8. https://doi.org/10.1016/J.Cub.2013.04.064.
Article
CAS
PubMed
Google Scholar
Metzger CMJA, Luijckx P, Bento G, Mariadassou M, Ebert D. The Red Queen lives: epistasis between linked resistance loci. Evolution. 2016;70:480–7. https://doi.org/10.1111/evo.12854.
Article
PubMed
Google Scholar
Weismann A. Die Continuität des Keimplasmas als Grundlage einer Theorie der Vererbung. Jena: Gustav Fischer; 1885.
Google Scholar
Metchnikoff ME. Über eine Sprosspilzkrankheit der Daphniden. Beitrag zur Lehre der Phagocyten gegen Krankheitserreger. Virchows Arch Path Anat Physiol. 1884;9:177–93.
Article
Google Scholar
Woltereck R. Weitere experimentelle Untersuchungen über Artveränderung speziell über das Wesen quantitativer Artunterschiede bei Daphniden. Verh deutsch zool Ges. 1909;19:110–72.
Google Scholar
Chatton É. Pansporella perplexa amœbien a spores protégées parasite des daphnies. Ann des Sci Nat Zool. 1925;8:5–85.
Google Scholar
Ringelberg J. Diel vertical migration of zoplankton in lakes and oceans. Dordrecht: Springer; 2010.
Book
Google Scholar
Brede N, Sandrock C, Straile D, Spaak P, Jankowski T, Streit B, Schwenk K. The impact of human-made ecological changes on the genetic architecture of Daphnia species. Proc Natl Acad Sci USA. 2009;106:4758–63. https://doi.org/10.1073/pnas.0807187106.
Article
PubMed
PubMed Central
Google Scholar
Duffy MA, Ochs JH, Penczykowski RM, Civitello DJ, Klausmeier CA, Hall SR. Ecological context influences epidemic size and parasite-driven evolution. Science. 2012;335:1636–8. https://doi.org/10.1126/Science.1215429.
Article
CAS
PubMed
Google Scholar
Monchamp ME, Enache I, Turko P, Pomati F, Risnoveanu G, Spaak P. Sedimentary and egg-bank DNA from 3 European lakes reveal concurrent changes in the composition and diversity of cyanobacterial and Daphnia communities. Hydrobiol. 2017;800:155–72. https://doi.org/10.1007/s10750-017-3247-7.
Article
CAS
Google Scholar
Brans KI, Jansen M, Vanoverbeke J, Tuzun N, Stoks R, De Meester L. The heat is on: genetic adaptation to urbanization mediated by thermal tolerance and body size. Glob Change Biol. 2017;23:5218–27. https://doi.org/10.1111/gcb.13784.
Article
Google Scholar
Van Damme K, Cornetti L, Fields PD, Ebert D. Whole-genome phylogenetic reconstruction as a powerful tool to reveal homoplasy and ancient rapid radiation in waterflea evolution. Syst Biol. 2021. https://doi.org/10.1093/sysbio/syab094.
Article
PubMed Central
Google Scholar
Cornetti L, Fields PD, Van Damme K, Ebert D. A fossil-calibrated phylogenomic analysis of Daphnia and the Daphniidae. Mol Phylogen Evo. 2019;137:250–62. https://doi.org/10.1016/j.ympev.2019.05.018.
Article
Google Scholar
Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH, Tokishita S, Aerts A, Arnold GJ, Basu MK, et al. The ecoresponsive genome of Daphnia pulex. Science. 2011;331:555–61. https://doi.org/10.1126/Science.1197761.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ebert D. A genome for the environment. Science. 2011;331:539–40. https://doi.org/10.1126/science.1202092.
Article
CAS
PubMed
Google Scholar
Ye ZQ, Xu S, Spitze K, Asselman J, Jiang XQ, Ackerman MS, Lopez J, Harker B, Raborn RT, Thomas WK, et al. A new reference genome assembly for the microcrustacean Daphnia pulex. Genes Genomes Genet. 2017;7:1405–16. https://doi.org/10.1534/g3.116.038638.
Article
CAS
Google Scholar
Lee BY, Choi BS, Kim MS, Park JC, Jeong CB, Han J, Lee JS. The genome of the freshwater water flea Daphnia magna: a potential use for freshwater molecular ecotoxicology. Aquat Toxicol. 2019;210:69–84. https://doi.org/10.1016/j.aquatox.2019.02.009.
Article
CAS
PubMed
Google Scholar
Routtu J, Hall MD, Albere B, Beisel C, Bergeron RD, Chaturvedi A, Choi JH, Colbourne J, De Meester L, Stephens MT, et al. An SNP-based second-generation genetic map of Daphnia magna and its application to QTL analysis of phenotypic traits. BMC Genomics. 2014;15:1033. https://doi.org/10.1186/1471-2164-15-1033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu S, Ackerman MS, Long HA, Bright L, Spitze K, Ramsdell JS, Thomas WK, Lynch M. A male-specific genetic map of the microcrustacean Daphnia pulex based on single-sperm whole-genome sequencing. Genetics. 2015;201:31–8. https://doi.org/10.1534/genetics.115.179028.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dukic M, Berner D, Roesti M, Haag CR, Ebert D. A high-density genetic map reveals variation in recombination rate across the genome of Daphnia magna. Bmc Genet. 2016. https://doi.org/10.1186/S12863-016-0445-7.
Article
PubMed
PubMed Central
Google Scholar
Yampolsky LY, Schaer TMM, Ebert D. Adaptive phenotypic plasticity and local adaptation for temperature tolerance in freshwater zooplankton. Proc Biol Sci. 2014;281:20132744. https://doi.org/10.1098/rspb.2013.2744.
Article
PubMed
PubMed Central
Google Scholar
Weider LJ, Hebert PDN. Ecological and physiological differentiation among low-artic clones of Daphnia pulex. Ecology. 1987;68:188–98.
Article
Google Scholar
Agra AR, Soares AMVM, Barata C. Life-history consequences of adaptation to pollution: Daphnia longispina clones historically exposed to copper. Ecotoxicology. 2011;20:552–62. https://doi.org/10.1007/s10646-011-0621-5.
Article
CAS
PubMed
Google Scholar
Fisk DL, Latta LC, Knapp RA, Pfrender ME. Rapid evolution in response to introduced predators I: rates and patterns of morphological and life-history trait divergence. BMC Evol Biol. 2007. https://doi.org/10.1186/1471-2148-7-22.
Article
PubMed
PubMed Central
Google Scholar
Teschner M. Effects of salinity on the life histroy and fitness of Daphnia magna: variability within and between populations. Hydrobiol. 1995;307:33–41.
Article
Google Scholar
Miner BE, Kerr B. Adaptation to local ultraviolet radiation conditions among neighbouring Daphnia populations. Proc Biol Sci. 2022;278:1306–13. https://doi.org/10.1098/rspb.2010.1663.
Article
Google Scholar
Santos JL, Ebert D. Trehalose provisioning in Daphnia resting stages reflects local adaptation to the harshness of diapause conditions. Biol Lett. 2022;18:20210615. https://doi.org/10.1098/rsbl.2021.0615.
Article
PubMed
Google Scholar
Kerfoot WC, Robbins JA, Weider LJ. A new approach to historical reconstruction: Combining descriptive and experimental paleolimnology. Limnol Oceanogr. 1999;44:1232–47. https://doi.org/10.4319/lo.1999.44.5.1232.
Article
Google Scholar
Orsini L, Schwenk K, De Meester L, Colbourne JK, Pfrender ME, Weider LJ. The evolutionary time machine: using dormant propagules to forecast how populations can adapt to changing environments. Trends Ecol Evol. 2013;28:274–82. https://doi.org/10.1016/J.Tree.2013.01.009.
Article
PubMed
PubMed Central
Google Scholar
Cousyn C, De Meester L, Colbourne JK, Brendonck L, Verschuren D, Volckaert F. Rapid, local adaptation of zooplankton behavior to changes in predation pressure in the absence of neutral genetic changes. Proc Natl Acad Sci USA. 2001;98:6256–60. https://doi.org/10.1073/pnas.111606798.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hairston NGJ, Lampert W, Cáceres CE, Holtmeier CL, Weider LJ, Gaedke U, Fischer J, Fox JA, Post DM. Rapid evolution revealed by dormant eggs. Nature. 1999;401:446.
Article
Google Scholar
Decaestecker E, Gaba S, Raeymaekers JAM, Stoks R, Van Kerckhoven L, Ebert D, De Meester L. Host-parasite ‘Red Queen’ dynamics archived in pond sediment. Nature. 2007;450:870–3. https://doi.org/10.1038/nature06291.
Article
CAS
PubMed
Google Scholar
Lack JB, Weider LJ, Jeyasingh PD. Whole genome amplification and sequencing of a Daphnia resting egg. Mol Ecol Resour. 2018;18:118–27. https://doi.org/10.1111/1755-0998.12720.
Article
CAS
PubMed
Google Scholar
Green J. Parasites and epibionts of Cladocera. Trans Zool Soc Lond. 1974;32:417–515. https://doi.org/10.1111/j.1096-3642.1974.tb00031.x.
Article
Google Scholar
Stirnadel HA, Ebert D. Prevalence, host specificity and impact on host fecundity of microparasites and epibionts in three sympatric Daphnia species. J Anim Ecol. 1997;66:212–22.
Article
Google Scholar
Regoes RR, Hottinger JW, Sygnarski L, Ebert D. The infection rate of Daphnia magna by Pasteuria ramosa conforms with the mass-action principle. Epidemiol Infect. 2003;131:957–66.
Article
CAS
Google Scholar
Ben-Ami F, Routtu J. The expression and evolution of virulence in multiple infections: the role of specificity, relative virulence and relative dose. BMC Evol Biol. 2013;13:97. https://doi.org/10.1186/1471-2148-13-97.
Article
PubMed
PubMed Central
Google Scholar
Carius HJ, Little TJ, Ebert D. Genetic variation in a host-parasite association: potential for coevolution and frequency-dependent selection. Evolution. 2001;55:1136–45.
Article
CAS
Google Scholar
Ameline C, Bourgeois Y, Vogtli F, Savola E, Andras J, Engelstadter J, Ebert D. A two-locus system with strong epistasis underlies rapid parasite-mediated evolution of host resistance. Mol Biol Evol. 2021;38:1512–28. https://doi.org/10.1093/molbev/msaa311.
Article
CAS
PubMed
Google Scholar
Izhar R, Ben-Ami F. Host age modulates parasite infectivity, virulence and reproduction. J Anim Ecol. 2015;84:1018–28. https://doi.org/10.1111/1365-2656.12352.
Article
PubMed
Google Scholar
Izhar R, Routtu J, Ben-Ami F. Host age modulates within-host parasite competition. Biol Lett. 2015;11:20150131. https://doi.org/10.1098/rsbl.2015.0131.
Article
PubMed
PubMed Central
Google Scholar
Ben-Ami F, Rigaud T, Ebert D. The expression of virulence during double infections by different parasites with conflicting host exploitation and transmission strategies. J Evol Biol. 2011;24:1307–16. https://doi.org/10.1111/j.1420-9101.2011.02264.x.
Article
CAS
PubMed
Google Scholar
Manzi F, Halle S, Seemann L, Ben-Ami F, Wolinska J. Sequential infection of Daphnia magna by a gut microsporidium followed by a haemolymph yeast decreases transmission of both parasites. Parasitology. 2021;148:1566–77. https://doi.org/10.1017/S0031182021001384.
Article
CAS
PubMed
Google Scholar
Duffy MA, Hall SR. Selective predation and rapid evolution can jointly dampen effects of virulent parasites on Daphnia Populations. Am Nat. 2008;171:499–510. https://doi.org/10.1086/528998.
Article
PubMed
Google Scholar
Hall MD, Vettiger A, Ebert D. Interactions between environmental stressors: the influence of salinity on host-parasite interactions between Daphnia magna and Pasteuria ramosa. Oecologia. 2013;171:789–96. https://doi.org/10.1007/S00442-012-2452-3.
Article
PubMed
Google Scholar
Zbinden M, Haag CR, Ebert D. Experimental evolution of field populations of Daphnia magna in response to parasite treatment. J Evol Biol. 2008;21:1088–1078.
Article
Google Scholar
Altermatt F, Ebert D. Genetic diversity of Daphnia magna populations enhances resistance to parasites. Ecol Lett. 2008;11:918–28. https://doi.org/10.1111/J.1461-0248.2008.01203.X.
Article
PubMed
Google Scholar
Pulkkinen K. Microparasite transmission to Daphnia magna decreases in the presence of conspecifics. Oecologia. 2007;154:45–53.
Article
Google Scholar
Lass S, Ebert D. Apparent seasonality of parasite dynamics: analysis of cyclic prevalence patterns. Proc Biol Sci. 2006;273:199–206.
PubMed
Google Scholar
Fredericksen M, Ameline C, Krebs M, Hussy B, Fields PD, Andras JP, Ebert D. Infection phenotypes of a coevolving parasite are highly diverse, structured, and specific. Evolution. 2021;75:2540–54. https://doi.org/10.1111/evo.14323.
Article
PubMed
PubMed Central
Google Scholar
Auld SKJR, Brand J. Simulated climate change, epidemic size, and host evolution across host-parasite populations. Glob Change Biol. 2017;23:5045–53. https://doi.org/10.1111/gcb.13769.
Article
Google Scholar
Haag KL, Larsson JIR, Refardt D, Ebert D. Cytological and molecular description of Hamiltosporidium tvaerminnensis gen. et sp nov., a microsporidian parasite of Daphnia magna, and establishment of Hamiltosporidium magnivora comb. nov. Parasitology. 2011;138:447–62. https://doi.org/10.1017/s0031182010001393.
Article
CAS
PubMed
Google Scholar
Haag KL, Pombert JF, Sun YK, de Albuquerque NRM, Batliner B, Fields P, Lopes TF, Ebert D. Microsporidia with vertical transmission were likely shaped by nonadaptive processes. Genome Biol Evol. 2020;12:3599–614. https://doi.org/10.1093/gbe/evz270.
Article
CAS
PubMed
Google Scholar
Kirk D, Luijckx P, Stanic A, Krkosek M. Predicting the thermal and allometric dependencies of disease transmission via the metabolic theory of ecology. Am Nat. 2019;193:661–76. https://doi.org/10.1086/702846.
Article
PubMed
Google Scholar
Lohr JN, Laforsch C, Koerner H, Wolinska J. A Daphnia parasite (Caullerya mesnili) constitutes a new member of the Ichthyosporea, a group of protists near the animal-fungi divergence. J Eukaryot Microbiol. 2010;57:328–36. https://doi.org/10.1111/j.1550-7408.2010.00479.x.
Article
CAS
PubMed
Google Scholar
Toenshoff ER, Fields PD, Bourgeois YX, Ebert D. The end of a 60-year riddle: identification and genomic characterization of an iridovirus the causative agent of white fat cell disease in zooplankton. Genes Genomes Genet. 2018;8:1259–72. https://doi.org/10.1534/g3.117.300429.
Article
CAS
Google Scholar
Andras JP, Fields PD, Du Pasquier L, Fredericksen M, Ebert D. Genome-wide association analysis identifies a genetic basis of infectivity in a model bacterial pathogen. Mol Biol Evol. 2020;37:3439–52. https://doi.org/10.1093/molbev/msaa173.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lange B, Kaufmann AP, Ebert D. Genetic, ecological and geographic covariables explaining host range and specificity of a microsporidian parasite. J Anim Ecol. 2015;84:1711–9. https://doi.org/10.1111/1365-2656.12421.
Article
PubMed
Google Scholar
Krebs M, Routtu J, Ebert D. QTL mapping of a natural genetic polymorphism for long-term parasite persistence in Daphnia populations. Parasitology. 2017;144:1686–94. https://doi.org/10.1017/s0031182017001032.
Article
CAS
PubMed
Google Scholar
Bento G, Fields PD, Duneau D, Ebert D. An alternative route of bacterial infection associated with a novel resistance locus in the Daphnia-Pasteuria host-parasite system. Heredity. 2020;125:173–83. https://doi.org/10.1038/s41437-020-0332-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bento G, Routtu J, Fields PD, Bourgeois Y, Du Pasquier L, Ebert D. The genetic basis of resistance and matching-allele interactions of a host-parasite system: The Daphnia magna-Pasteuria ramosa model. PLoS Genet. 2017. https://doi.org/10.1371/journal.pgen.1006596.
Article
PubMed
PubMed Central
Google Scholar
Petrusek A, Tollrian R, Schwenk K, Haas A, Laforsch C. A “crown of thorns” is an inducible defense that protects Daphnia against an ancient predator. Proc Natl Acad Sci USA. 2009;106:2248–52.
Article
CAS
Google Scholar
Herzog Q, Rabus M, Ribeiro BW, Laforsch C. Inducible defenses with a “Twist”: Daphnia barbata abandons bilateral symmetry in response to an ancient predator. PLoS ONE. 2016;11: e0148556. https://doi.org/10.1371/journal.pone.0148556.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gerber N, Kokko H, Ebert D, Booksmythe I. Daphnia invest in sexual reproduction when its relative costs are reduced. Proc Biol Sci. 2018;285:20172176. https://doi.org/10.1098/rspb.2017.2176.
Article
PubMed
PubMed Central
Google Scholar
Roulin AC, Bourgeois Y, Stiefel U, Walser JC, Ebert D. A Photoreceptor contributes to the natural variation of diapause induction in Daphnia magna. Mol Biol Evol. 2016;33:3194–204. https://doi.org/10.1093/molbev/msw200.
Article
CAS
PubMed
Google Scholar
Penalva-Arana DC, Lynch M, Robertson HM. The chemoreceptor genes of the waterflea Daphnia pulex: many Grs but no Ors. BMC Evol Biol. 2009. https://doi.org/10.1186/1471-2148-9-79.
Article
PubMed
PubMed Central
Google Scholar
Weiss LC, Albada B, Becker SM, Meckelmann SW, Klein J, Meyer M, Schmitz OJ, Sommer U, Leo M, Zagermann J, et al. Identification of Chaoborus kairomone chemicals that induce defences in Daphnia. Nat Chem Biol. 2018;14:1133. https://doi.org/10.1038/s41589-018-0164-7.
Article
CAS
PubMed
Google Scholar
Tollrian R. Predator-induced helmet formation in Daphnia cucullata (Sars). Arch Hydrobiol. 1990;119:191–6.
Article
Google Scholar
Laforsch C, Tollrian R. Inducible defenses in multipredator environments: Cyclomorphosis in Daphnia cucullata. Ecology. 2004;85:2302–11.
Article
Google Scholar
Horstmann M, Tollrian R, Weiss LC. Thwarting predators? A three-dimensional perspective of morphological alterations in the freshwater crustacean Daphnia. PLoS ONE. 2021. https://doi.org/10.1371/journal.pone.0254263.
Article
PubMed
PubMed Central
Google Scholar
Ebert D. The trade-off between offspring size and number in Daphnia magna: the influence of genetic, environmental and maternal effects. Arch Hydrobiol. 1993;90:453–73.
Google Scholar
Moenickes S, Richter O, Pirow R. Approaching the evolutionary advantage of ancillary types of haemoglobin in Daphnia magna by simulation of oxygen supply. J Exp Biol. 2010;213:408–17.
Article
CAS
Google Scholar
OECD. Test No. 202: Daphnia sp. Acute Immobilisation Test; 2004.
OECD. Test No. 211: Daphnia magna Reproduction Test; 2012.
Bownik A, Wlodkowic D. Advances in real-time monitoring of water quality using automated analysis of animal behaviour. Sci Total Environ. 2021;789: 147796. https://doi.org/10.1016/j.scitotenv.2021.147796.
Article
CAS
PubMed
Google Scholar
Baird DJ, Barber I, Bradley M, Calow P, Soares AMVM. The Daphnia Bioassay—a Critique. Hydrobiol. 1989;188:403–6. https://doi.org/10.1007/Bf00027806.
Article
Google Scholar
Stollewerk A. Evolution of patterning mechanisms. Arthropod Struct Dev. 2010;39:397–8. https://doi.org/10.1016/J.Asd.2010.10.005.
Article
PubMed
Google Scholar
Pace RM, Grbic M, Nagy LM. Composition and genomic organization of arthropod Hox clusters. EvoDevo. 2016. https://doi.org/10.1186/s13227-016-0048-4.
Article
PubMed
PubMed Central
Google Scholar
Papillon D, Telford MJ. Evolution of Hox3 and ftz in arthropods: insights from the crustacean Daphnia pulex. Develop Genes Evol. 2007;217:315–22. https://doi.org/10.1007/s00427-007-0141-8.
Article
CAS
Google Scholar
Schwarzenberger A, Von Elert E. What makes a man a man? Prenatal antennapedia expression is involved in the formation of the male phenotype in Daphnia. Develop Genes Evol. 2016;226:47–51. https://doi.org/10.1007/s00427-015-0525-0.
Article
CAS
Google Scholar
Shiga Y, Sagawa K, Takai R, Sakaguchi H, Yamagata H, Hayashi S. Transcriptional readthrough of Hox genes Ubx and Antp and their divergent post-transcriptional control during crustacean evolution. Evol Dev. 2006;8:407–14. https://doi.org/10.1111/j.1525-142X.2006.00114.x.
Article
CAS
PubMed
Google Scholar
Ayyar S, Negre B, Simpson P, Stollewerk A. An arthropod cis-regulatory element functioning in sensory organ precursor development dates back to the Cambrian. BMC Biol. 2010. https://doi.org/10.1186/1741-7007-8-127.
Article
PubMed
PubMed Central
Google Scholar
Klann M, Stollewerk A. Evolutionary variation in neural gene expression in the developing sense organs of the crustacean Daphnia magna. Develop Biol. 2017;424:50–61. https://doi.org/10.1016/j.ydbio.2017.02.011.
Article
CAS
PubMed
Google Scholar
Ungerer P, Eriksson BJ, Stollewerk A. Unravelling the evolution of neural stem cells in arthropods: notch signalling in neural stem cell development in the crustacean Daphnia magna. Develop Biol. 2012;371:302–11. https://doi.org/10.1016/J.Ydbio.2012.08.025.
Article
CAS
PubMed
Google Scholar
Ishak NSM, Nong QD, Matsuura T, Kato Y, Watanabe H. Co-option of the bZIP transcription factor Vrille as the activator of Doublesex1 in environmental sex determination of the crustacean Daphnia magna. PLoS Genet. 2017. https://doi.org/10.1371/journal.pgen.1006953.
Article
Google Scholar
Kato Y, Kobayashi K, Watanabe H, Iguchi T. Environmental sex determination in the Branchiopod Crustacean Daphnia magna: deep conservation of a doublesex gene in the sex-determining pathway. PLoS Genet. 2011;7:e1001345. https://doi.org/10.1371/Journal.Pgen.1001345.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nong QD, Matsuura T, Kato Y, Watanabe H. Two Doublesex1 mutants revealed a tunable gene network underlying intersexuality in Daphnia magna. PLoS ONE. 2020;15:e0238256. https://doi.org/10.1371/journal.pone.0238256.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ye ZQ, Molinier C, Zhao CX, Haag CR, Lynch M. Genetic control of male production in Daphnia pulex. Proc Natl Acad Sci USA. 2019;116:15602–9. https://doi.org/10.1073/pnas.1903553116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mittmann B, Ungerer P, Klann M, Stollewerk A, Wolff C. Development and staging of the water flea Daphnia magna (Straus, 1820; Cladocera, Daphniidae) based on morphological landmarks. EvoDevo. 2014. https://doi.org/10.1186/2041-9139-5-12.
Article
PubMed
PubMed Central
Google Scholar
Kato Y, Shiga Y, Kobayashi K, Tokishita S, Yamagata H, Iguchi T, Watanabe H. Development of an RNA interference method in the cladoceran crustacean Daphnia magna. Develop Genes Evol. 2011;220:337–45. https://doi.org/10.1007/S00427-011-0353-9.
Article
CAS
Google Scholar
Toyota K, Miyagawa S, Ogino Y, Iguchi T. Microinjection-based RNA interference method in the Water flea, Daphnia pulex and Daphnia magna. In: Abdurakhmonov IY, editor. RNA interference. London: IntechOpen; 2016.
Google Scholar
Adhitama N, Kato Y, Matsuura T, Watanabe H. Roles of and cross-talk between ecdysteroid and sesquiterpenoid pathways in embryogenesis of branchiopod crustacean Daphnia magna. PLoS ONE. 2020. https://doi.org/10.1371/journal.pone.0239893.
Article
PubMed
PubMed Central
Google Scholar
Nakanishi T, Kato Y, Matsuura T, Watanabe H. CRISPR/Cas-mediated targeted mutagenesis in Daphnia magna. PLoS ONE. 2014. https://doi.org/10.1371/journal.pone.0098363.
Article
PubMed
PubMed Central
Google Scholar
Religia P, Nguyen ND, Nong QD, Matsuura T, Kato Y, Watanabe H. Mutation of the Cytochrome P450 CYP360A8 Gene Increases Sensitivity to Paraquat in Daphnia magna. Environ Toxicol Chem. 2021;40:1279–88. https://doi.org/10.1002/etc.4970.
Article
CAS
PubMed
Google Scholar
Kumagai H, Nakanishi T, Matsuura T, Kato Y, Watanabe H. CRISPR/Cas-mediated knock-in via non-homologous end-joining in the crustacean Daphnia magna. PLoS ONE. 2017. https://doi.org/10.1371/journal.pone.0186112.
Article
PubMed
PubMed Central
Google Scholar
Naitou A, Kato Y, Nakanishi T, Matsuura T, Watanabe H. Heterodimeric TALENs induce targeted heritable mutations in the crustacean Daphnia magna. Biol Open. 2015;4:364–9. https://doi.org/10.1242/bio.20149738.
Article
PubMed
PubMed Central
Google Scholar
Nakanishi T, Kato Y, Matsuura T, Watanabe H. TALEN-mediated knock-in via non-homologous end joining in the crustacean Daphnia magna. Sci Rep. 2016. https://doi.org/10.1038/srep36252.
Article
PubMed
PubMed Central
Google Scholar
Arao T, Kato Y, Nong QD, Yamamoto H, Watanabe H, Matsuura T, Tatarazako N, Tani K, Okamoto A, Matsumoto T, et al. Production of genome-edited Daphnia for heavy metal detection by fluorescence. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-78572-z.
Article
PubMed
PubMed Central
Google Scholar
Schumpert CA, Dudycha JL, Patel RC. Development of an efficient RNA interference method by feeding for the microcrustacean Daphnia. Bmc Biotechnol. 2015. https://doi.org/10.1186/s12896-015-0209-x.
Article
PubMed
PubMed Central
Google Scholar
Adhitama N, Matsuura T, Kato Y, Watanabe H. Monitoring ecdysteroid activities using genetically encoded reporter gene in Daphnia magna. Mar Environ Res. 2018;140:375–81. https://doi.org/10.1016/j.marenvres.2018.07.003.
Article
CAS
PubMed
Google Scholar
Kato Y, Nakanishi T, Watanabe H. Genome editing in the Crustacean Daphnia magna using CRISPR/Cas and TALEN systems. In: Appasani K, Church GM, editors. Genome editing and engineering: from Talens, Zfns and Crisprs to molecular surgery. Cambridge: Cambridge University Press; 2018.
Google Scholar
Rivetti C, Campos B, Pina B, Raldua D, Kato Y, Watanabe H, Barata C. Tryptophan hydroxylase (TRH) loss of function mutations induce growth and behavioral defects in Daphnia magna. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-19778-0.
Article
PubMed
PubMed Central
Google Scholar
Nguyen ND, Matsuura T, Kato Y, Watanabe H. DNMT3.1 controls trade-offs between growth, reproduction, and life span under starved conditions in Daphnia magna. Sci Rep. 2021. https://doi.org/10.1038/s41598-021-86578-4.
Article
PubMed
PubMed Central
Google Scholar
Routtu J, Ebert D. Genetic architecture of resistance in Daphnia hosts against two species of host-specific parasites. Heredity. 2015;114:241–8. https://doi.org/10.1038/hdy.2014.97.
Article
CAS
PubMed
Google Scholar
Czypionka T, Fields PD, Routtu J, van den Berg E, Ebert D, De Meester L. The genetic architecture underlying diapause termination in a planktonic crustacean. Mol Ecol. 2019;28:998–1008. https://doi.org/10.1111/mec.15001.
Article
CAS
PubMed
Google Scholar
Ravindran SP, Luneburg J, Gottschlich L, Tams V, Cordellier M. Daphnia stressor database: taking advantage of a decade of Daphnia ‘-omics’ data for gene annotation. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-47226-0.
Article
PubMed
PubMed Central
Google Scholar
Schwarzenberger A, Chen LX, Weiss LC. The expression of circadian clock genes in Daphnia magna diapause. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-77065-3.
Article
PubMed
PubMed Central
Google Scholar
Brun NR, Fields PD, Horsfield S, Mirbahai L, Ebert D, Colbourne JK, Fent K. Mixtures of aluminum and indium induce more than additive phenotypic and toxicogenomic responses in Daphnia magna. Environ Sci Technol. 2019;53:1639–49. https://doi.org/10.1021/acs.est.8b05457.
Article
CAS
PubMed
Google Scholar
Molinier C, Reisser CMO, Fields PD, Segard A, Galimov Y, Haag CR. Evolution of gene expression during a transition from environmental to genetic sex determination. Mol Biol Evol. 2019;36:1551–64. https://doi.org/10.1093/molbev/msz123.
Article
CAS
PubMed
Google Scholar
Wilde MV, Brehm J, Schwarzer M, Stockl JB, Laforsch C, Frohlich T. Improving the proteome coverage of Daphnia magna—implications for future ecotoxicoproteomics studies. Proteomics. 2022;22: e2100289. https://doi.org/10.1002/pmic.202100289.
Article
CAS
PubMed
Google Scholar
Zaffagnini F, Sabelli B. Karyologic observations on the maturation of the summer and winter eggs of Daphnia pulex and Daphnia middendorffiana. Chromosoma. 1972;36:193–203.
Article
CAS
Google Scholar
Zaffagnini F. Reproduction in Daphnia. MemIst Ital Idrobiol (Memorie Dell'Istituto Italiano di Idrobiologia DottMarco De Marchi). 1987;45:245–284.
Tsuchiya D, Eads BD, Zolan ME. Methods for meiotic chromosome preparation, immunofluorescence, and fluorescence in situ hybridization in Daphnia pulex. In: Keeney S, editor. Meiosis, vol. 2. Heidelberg: Springer; 2009. p. 235–49.
Chapter
Google Scholar
Cristescu MEA, Colbourne JK, Radivojc J, Lynch M. A micro satellite-based genetic linkage map of the waterflea, Daphnia pulex: on the prospect of crustacean genomics. Genomics. 2006;88:415–30.
Article
CAS
Google Scholar
Giribet G, Edgecombe GD. Current Understanding of Ecdysozoa and its internal phylogenetic relationships. Integr Comp Biol. 2017;57:455–66. https://doi.org/10.1093/icb/icx072.
Article
PubMed
Google Scholar
Martín-Durán JM, Vellutini BC. Introduction: young approaches to animal evolution. In: Martín-Durán Jm, Vellutini BC, editors. Old questions and young approaches to animal evolution. Cham: Springer; 2019. p. 1–13.
Chapter
Google Scholar
Andrew DR. A new view of insectecrustacean relationships II. Inferences from expressed sequence tags and comparisons with neural cladistics. Arthropod Struct Dev. 2011;40:289–302. https://doi.org/10.1016/j.asd.2011.02.001.
Article
PubMed
Google Scholar
von Reumont BM, Jenner RA, Wills MA, Dell’Ampio E, Pass G, Ebersberger I, Meyer B, Koenemann S, Iliffe TM, Stamatakis A, et al. Pancrustacean phylogeny in the light of new phylogenomic data support for remipedia as the possible sister group of hexapoda. Mol Biol Evol. 2012;29:1031–45. https://doi.org/10.1093/molbev/msr270.
Article
CAS
Google Scholar
Duneau D, Luijckx P, Ben-Ami F, Laforsch C, Ebert D. Resolving the infection process reveals striking differences in the contribution of environment, genetics and phylogeny to host-parasite interactions. BMC Biol. 2011;9:11. https://doi.org/10.1186/1741-7007-9-11.
Article
PubMed
PubMed Central
Google Scholar
Laforsch C, Tollrian R. Extreme helmet formation in Daphnia cucullata induced by small-scale turbulence. J Plank Res. 2004;26:81–7.
Article
Google Scholar