Mitchell RW, Russell RH, Elliott WR. Mexican eyeless Characin fishes, genus Astyanax: environment, distribution, and evolution. Spec Publ Mus Texas Tech Univ. 1977;12:1–89.
Google Scholar
Elliott WR. The Astyanax caves of Mexico. Cavefishes of Tamaulipas, San Luis Potosi, and Guerrero. Association for Mexican Cave Studies. Bulletin 26. 2018: 1–325.
Fumey J, Hinaux H, Noirot C, Thermes C, Rétaux S, Casane D. Evidence for late Pleistocene origin of Astyanax mexicanus cavefish. BMC Evol Biol. 2018. https://doi.org/10.1186/s12862-018-1156-7.
Article
PubMed
PubMed Central
Google Scholar
Herman A, Brandvain Y, Weagley J, Jeffery WR, Keene AC, Kono T, et al. The role of gene flow in rapid and repeated evolution of cave related traits in Mexican tetra, Astyanax mexicanus. Mol Ecol. 2018;27:4397–416.
CAS
PubMed
PubMed Central
Google Scholar
Gross JB. The complex origin of Astyanax cavefish. BMC Evol Biol. 2012;12:105.
PubMed
PubMed Central
Google Scholar
Hainau H, Pottin K, Chaihoub H, Père S, Elipot Y, Legendre L, et al. A developmental staging table for Astyanax mexicanus surface fish and Pachón cavefish. Zebrafish. 2011;8:155–65.
Google Scholar
Yoshizawa M, Gorički Š, Soares D, Jeffery WR. Evolution of a behavioral shift mediated by superficial neuromasts helps cavefish find food in darkness. Curr Biol. 2010;20:1631–6.
CAS
PubMed
PubMed Central
Google Scholar
Borowsky RL. Astyanax mexicanus, the blind Mexican cave fish. A model for studies in development and morphology. In: Behringer RR, Johnson AD, Krumlauf RE, editors. Emerging model organisms: a laboratory manual, vol. 1. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2009.
Google Scholar
Elipot Y, Legendre L, Père S, Sohm F, Rétaux S. Astyanax transgenesis and husbandry: how cavefish enters the laboratory. Zebrafish. 2014;11:291–9.
CAS
PubMed
Google Scholar
Jeffery WR. Cavefish as a model system in evolutionary developmental biology. Dev Biol. 2001;231:1–12.
CAS
PubMed
Google Scholar
Jeffery WR. Regressive evolution in the cavefish Astyanax. Annu Rev Genet. 2009;43:25–47.
CAS
PubMed
PubMed Central
Google Scholar
Strickler AG, Yamamoto Y, Jeffery WR. The lens controls cell survival in the retina: evidence from the blind cavefish Astyanax. Dev Biol. 2007;311:512–23.
CAS
PubMed
PubMed Central
Google Scholar
Yamamoto Y, Jeffery WR. Central role for the lens in cave fish eye degeneration. Science. 2000;289:631–3.
CAS
PubMed
Google Scholar
Yamamoto Y, Stock DW, Jeffery WR. Hedgehog signalling controls eye degeneration in blind cavefish. Nature. 2004;431:844–7.
CAS
PubMed
Google Scholar
Pottin K, Hinaux H, Rétaux S. Restoring eye size in Astyanax mexicanus blind cavefish embryos through modulation of the Shh and FgF8 forebrain organising centres. Development. 2011;138:2467–76.
CAS
PubMed
Google Scholar
Yamamoto Y, Byerly MS, Jackman WR, Jeffery WR. Pleiotropic functions of embryonic sonic hedgehog expression link jaw and taste bud amplification with eye loss during cavefish evolution. Dev Biol. 2009;330:200–11.
CAS
PubMed
PubMed Central
Google Scholar
Hinaux H, Devos L, Blin M, Elipot Y, Bibliowicz J, Alié A, et al. Sensory evolution in blind cavefish is driven by early embryonic events during gastrulation and neurulation. Development. 2016;143:4521–32.
CAS
PubMed
Google Scholar
Atokorala ADS, Franz-Odendaal TA. Genetic linkage between altered tooth and eye development in lens-ablated Astyanax mexicanus. Dev Biol. 2018;441:235–41.
Google Scholar
Yoshizawa M, Yamamoto Y, O’Quin KE, Jeffery WR. Evolution of an adaptive behavior and its sensory receptors promotes eye regression in blind cavefish. BMC Biol. 2013;10:108. https://doi.org/10.1186/1741-7007-10-108.
Article
Google Scholar
Protas M, Conrad M, Gross JB, Tabin C, Borowsky R. Regressive evolution in the Mexican cave tetra, Astyanax mexicanus. Curr Biol. 2007;17:452–4.
CAS
PubMed
PubMed Central
Google Scholar
O’Quin KE, Yoshizawa M, Doshi P, Jeffery WR. Quantitative genetic analysis of retinal degeneration in the blind cavefish. PLoS ONE. 2013;8:e57281. https://doi.org/10.1371/journal.pone.0057281.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma L, Gore AV, Castranova D, Shi J, Ng M, Tomins KA, et al. A hypomorphic cystathionine ß-synthetase gene contributes to cavefish eye loss by disrupting optic vasculature. Nat Commun. 2020;11:2772. https://doi.org/10.1038/s41467-020-16497-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeffery WR, Ma L, Parkhurst A, Bilandžija H. Pigment regression and albinism in Astyanax cavefish. In: Keene M, Yoshizawa M, McGaugh S, editors. Biology and evolution of the Mexican cavefish. New York: Elsevier; 2016. p. 155–73.
Google Scholar
Gross JB, Borowsky R, Tabin CJ. A novel role for Mc1r in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus. PLoS Genet. 2009;5:e1000326. https://doi.org/10.1371/journal.pgen.1000326.
Article
CAS
PubMed
PubMed Central
Google Scholar
Protas ME, Hersey C, Kochanek D, Zhou Y, Wilkens H, Jeffery WR, et al. Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nat Genet. 2006;38:107–11.
CAS
PubMed
Google Scholar
Yoshizawa M, Robinson BG, Duboué ER, Masek P, Jaggard JB, O’Quin KE, et al. Distinct genetic architecture underlies the emergence of sleep loss and prey-seeking behavior in the Mexican cavefish. BMC Biol. 2015;13:15.
PubMed
PubMed Central
Google Scholar
Kowalko JE, Rohner N, Rompani SB, Peterson BK, Linden T, Yoshizawa M, et al. Genetic analysis of the loss of schooling behavior in cavefish reveals both sight-dependent and independent mechanisms. Curr Biol. 2013;23:1874–83. https://doi.org/10.1016/j.cub.2013.07.056.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kowalko JE, Rohner N, Linden TA, Rompani SB, Warren WC, Borowsky R, et al. Convergence in feeding posture occurs through different genetic loci in independently evolved cave populations of Astyanax mexicanus. Proc Natl Acad Sci USA. 2013;110:16933–8.
CAS
PubMed
PubMed Central
Google Scholar
Gross JB, Krutzler AJ, Carlson BM. Complex craniofacial changes in blind cave-dwelling fish are mediated by genetically symmetric and asymmetric loci. Genetics. 2014;196:1303.
CAS
PubMed
PubMed Central
Google Scholar
Lyon A, Powers AK, Gross JB, O’Quin KE. Two-three loci control scleral ossicle formation via epistasis in the cavefish Astyanax mexicanus. PLoS ONE. 2017;1(2):e0171061. https://doi.org/10.1371/journal.pone.0171061.
Article
CAS
Google Scholar
Borowsky R. Restoring sight in blind cavefish. Curr Biol. 2008;18:R23–4.
CAS
PubMed
Google Scholar
Ma L, Strickler AG, Parkhurst A, Yoshizawa M, Shi J, Jeffery WR. Maternal effects in Astyanax cavefish development. Dev Biol. 2018;441:209–20.
CAS
PubMed
PubMed Central
Google Scholar
Torres-Paz J, Leclercq J, Rétaux S. Maternally regulated gastrulation as a source of variation contributing to cavefish forebrain evolution. eLife. 2019;8:e50160. https://doi.org/10.7554/elife.50160.
Article
CAS
PubMed
PubMed Central
Google Scholar
Volkoff H. Feeding behavior, starvation response, and endocrine regulation of feeding in Mexican blind cavefish (Astyanax fasciatus mexicanus). In: Keene M, Yoshizawa M, McGaugh S, editors. Biology and evolution of the Mexican cavefish. New York: Elsevier; 2016. p. 269–90.
Google Scholar
Aspiras AC, Rohner N, Martineau B, Borowsky RL, Tabin C. Melanocortin 4 receptor mutations contribute to the adaptation of cavefish to nutrient-poor conditions. Proc Natl Acad Sci USA. 2018;112:9668–73.
Google Scholar
Riddle M, Aspiras A, Gaudenz K, Peuß R, Sung JY, Martineau B, et al. Insulin resistance in cavefish as an adaptation to a nutrient-limited environment. Nature. 2018;555:647–51.
CAS
PubMed
PubMed Central
Google Scholar
Beale AD, Whitmore D. Daily rhythms in a timeless environment: circadian clocks in Astyanax mexicanus. In: Keene M, Yoshizawa M, McGaugh S, editors. Biology and evolution of the Mexican cavefish. New York: Elsevier; 2016. p. 309–33.
Google Scholar
Beale AD, Guibal C, Tamai TK, Klotz L, Cowen S, Peyric E, et al. Circadian rhythms in Mexican blind cavefish Astyanax mexicanus: in the lab and in the field. Nat Commun. 2013;4:2769. https://doi.org/10.1038/ncommuns3769.
Article
PubMed
Google Scholar
Tang JLY, Guo Y, Stockdale WT, Rana K, Killen AC, Mommersteeg MTM, et al. The development and origin of heart size and shape differences in Astyanax mexicanus. Dev Biol. 2018;441:272–84.
CAS
PubMed
PubMed Central
Google Scholar
Stockdale WT, Lemieux ME, Killen AC, Zhao J, Riepsaame J, Hamilton N, et al. Heart regeneration in the Mexican cavefish. Cell Rep. 2018;25:1997–2007.
CAS
PubMed
PubMed Central
Google Scholar
Gross JB, Powers AK. The evolution of the cavefish craniofacial complex. In: Keene M, Yoshizawa M, McGaugh S, editors. Biology and evolution of the Mexican cavefish. New York: Elsevier; 2016. p. 193–207.
Google Scholar
Yamamoto Y, Espinasa L, Stock DW, Jeffery WR. Development and evolution of craniofacial patterning is mediated by eye-dependent and -independent processes in the cavefish Astyanax. Evol Dev. 2003;5:435–46.
PubMed
Google Scholar
Krishnan J, Persons JL, Peuß R, Hassan H, Kenzior A, Xiong S, et al. Comparative transcriptome analysis of wild and lab populations of Astyanax mexicanus uncovers differential effects of environment and morphotype on gene expression. J Exp Zool (Mol Dev Evol). 2020. https://doi.org/10.1002/jez.b.22933.
Article
Google Scholar
Rohner N. Selection through standing genetic variation. In: Keene M, Yoshizawa M, McGaugh S, editors. Biology and evolution of the Mexican cavefish. New York: Elsevier; 2016. p. 137–52.
Google Scholar
Bilandžija H, Hollifield B, Steck M, Meng G, Ng M, Koch AD, et al. Phenotypic plasticity as a mechanism of cave colonization and adaptation. eLife. 2020;9:e51830. https://doi.org/10.7554/eLife.51830.
Article
PubMed
PubMed Central
Google Scholar
Wilkens H. The role of selection in the evolution of blindness. Biol J Lin Soc. 2020. https://doi.org/10.1093/biolinnean/blaa054.
Article
Google Scholar
Ma L, Ng M, van der Weele CM, Yoshizawa M, Jeffery WR. Dual roles of the retinal pigment epithelium and lens in cavefish eye degeneration. J Exp Zool (Mol Dev Evol). 2020. https://doi.org/10.1002/jez.b.22923.
Article
Google Scholar
Bilandžija H, Abraham L, Ma L, Renner K, Jeffery WR. Behavioral changes controlled by catecholaminergic systems explain recurrent loss of pigmentation in cavefish. Proc R Soc B. 2018. https://doi.org/10.1098/rspb.2018.0243.
Article
PubMed
PubMed Central
Google Scholar
McCauley DW, Hixon E, Jeffery WR. Evolution of pigment cell regression in the cavefish Astyanax: a late step in melanogenesis. Evol Dev. 2004;6:209–18.
CAS
PubMed
Google Scholar
Yoshizawa M, Jeffery WR. Shadow response in the blind cavefish Astyanax reveals conservation of a functional pineal eye. J Exp Biol. 2018;211:292–9.
Google Scholar
Gore AV, Tomins KA, Iben J, Ma L, Castranova D, Davis A, et al. An epigenetic mechanism for cavefish eye degeneration. Nat Ecol Evol. 2018;2:1155–60.
PubMed
PubMed Central
Google Scholar
Yoshizawa M, Hixon E, Jeffery WR. Neural crest transplantation reveals key roles in the evolution of cavefish development. Integr Comp Biol. 2018. https://doi.org/10.1093/icb/icy006.
Article
PubMed
PubMed Central
Google Scholar
Ma L, Parkhurst A, Jeffery WR. The role of a lens survival pathway including sox2 and αA-crystallin in the evolution of cavefish eye degeneration. EvoDevo. 2014;5:28.
PubMed
PubMed Central
Google Scholar
Ma L, Jeffery WR, Essner JJ, Kowalko JE. Genome editing using TALENs in blind Mexican cavefish. PLoS ONE. 2015. https://doi.org/10.1371/journal.pome.0119370.
Article
PubMed
PubMed Central
Google Scholar
Klaassen H, Wang Y, Adamski K, Rohner N, Kowalko JE. CRISPR mutagenesis confirms the role of oca2 in melanin pigmentation in Astyanax mexicanus. Dev Biol. 2018;44:313–8.
Google Scholar
Stahl B, Peuß R, McDole B, Kensor A, Jaggard JB, Gaudenz K, et al. Stable transgenesis in Astyanax mexicanus using the Tol2 transposase system. Dev Dyn. 2019;248:679–87.
CAS
PubMed
PubMed Central
Google Scholar
Casane D, Rétaux S. Evolutionary genetics of the cavefish Astyanax mexicanus. Adv Genet. 2016;95:117–59.
CAS
PubMed
Google Scholar
Keene A, Yoshizawa M, McGaugh S, editors. Biology and evolution of the Mexican cavefish. New York: Elsevier; 2016.
Google Scholar
Riddle MR, Tabin CJ. Little fish, big questions: a collection of modern techniques for Mexican tetra research. J Vis Exp. 2020. https://doi.org/10.3791/60592.
Article
PubMed
Google Scholar
McGaugh SE, Gross JB, Aken B, Blin M, Borowsky R, Chalopin D, et al. The cavefish genome reveals candidate genes for eye loss. Nat Commun. 2014. https://doi.org/10.1038/natcommun63.
Article
PubMed
Google Scholar
Loomis C, Peuß R, Jaggard JB, Wang Y, McKinney SA, Raftopoulos SC, et al. An adult brain atlas reveals broad neuroanatomical changes in independently evolved populations of Mexican cavefish. Front Neuroanat. 2019. https://doi.org/10.3389/fnana.2019.0008.
Article
PubMed
PubMed Central
Google Scholar
Jeffery WR. Concluding remarks. The Astyanax community. In: Keene M, Yoshizawa M, McGaugh S, editors. Biology and evolution of the Mexican cavefish. New York: Elsevier; 2016. p. 393–6.
Google Scholar