Morrill JB. Development of the pulmonate gastropod lymnaea. In: Ronald RC, Frederick WH, Alan R, editors. Developmental biology of freshwater invertebrate. New York: Liss Inc.; 1982. p. 399–483.
Google Scholar
Morrill JB. Cellular patterns and morphogenesis in early development of freshwater pulmonate snails, Lymnaea and Physa (Gastropoda, Mollusca). In: Adiyodi KG, Adiyodi RG, editors. Reproductive biology of invertebrates, progress in developmental biology, vol. 7. New York: Wiley; 1998. p. 67–107.
Google Scholar
Meshcheryakov VN. The common pond snail Lymnaea stagnalis. In: Dettlaff TA, Vassetzky SG, editors. Animal species for developmental studies Invertebrates, vol. 1. New York: Consultants Bureau; 1990. p. 69–132.
Chapter
Google Scholar
Hubendick B. Recent Lymnaeidae Their variation, morphology, taxonomy, nomenclature, and distribution. Kungl Svenska Vetensk Akad Handl. 1951;3:1–223.
Google Scholar
Van Duivenboden YA, Ter Maat A. Mating behaviour of Lymnaea stagnalis. Malacologia. 1988;28:53–64.
Google Scholar
Koene JM, Ter Maa A. Coolidge effect in pond snails: male motivation in a simultaneous hermaphrodite. BMC Evol Biol. 2007;7:212.
Article
PubMed
PubMed Central
Google Scholar
Van Duivenboden YA, Pieneman A, Ter Maat A. Multiple mating suppresses fecundity in the hermaphrodite freshwater snail Lymnaea stagnalis: a laboratory study. Anim Behav. 1985;33:1184–91.
Article
Google Scholar
Kuroda R, Endo B, Abe M, Shimizu M. Chiral blastomere arrangement dictates zygotic left-right asymmetry pathway in snails. Nature. 2009;462(7274):790–4.
Article
CAS
PubMed
Google Scholar
Henry JQ. Spiralian model systems. Int J Dev Biol. 2014;58(6–8):389–401.
Article
PubMed
Google Scholar
Martín-Durán JM, Marlétaz F. Unravelling spiral cleavage. Development. 2020;147(1):181081.
Article
CAS
Google Scholar
Vandenberg LN, Levin M. Far from solved: a perspective on what we know about early mechanisms of left-right asymmetry. Dev Dyn. 2010;239:3131–46.
Article
PubMed
Google Scholar
Nakamura T, Hamada H. Left-right patterning: conserved and divergent mechanisms. Development. 2012;139:3257–62.
Article
CAS
PubMed
Google Scholar
Blum M, Schweickert A, Vick P, Wright CV, Danilchik MV. Symmetry breakage in the vertebrate embryo: when does it happen and how does it work? Dev. Biol. 2014;393:109–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coutelis JB, González-Morales N, Géminard C, Noselli S. Diversity and convergence in the mechanisms establishing L/R asymmetry in metazoa. EMBO Rep. 2014;15:926–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuroda R, Fujikura K, Abe M, Hosoiri Y, Asakawa S, Shimizu M, Umeda S, Ichikawa F, Takahashi H. Diaphanous gene mutation affects spiral cleavage and chirality in snails. Sci Rep. 2016;6:34809.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abe M, Kuroda R. The development of CRISPR for a mollusc establishes the formin Lsdia1 as the long-sought gene for snail dextral/sinistral coiling. Development. 2019;146(9):dev175976.
Kuroda R. How a single gene twists a snail. Integr Comp Biol. 2014;54:677–87.
Article
CAS
PubMed
Google Scholar
Boycott AE, Diver C. On the inheritance of sinistrality in Limnaea peregra. Proc R Soc Lond B. 1923;95:207–13.
Article
Google Scholar
Sturtevant AH. Inheritance of direction of coiling in Lymnaea. Science. 1923;58:269–70.
Article
CAS
PubMed
Google Scholar
Shibazaki Y, Shimizu M, Kuroda R. Body handedness is directed by genetically determined cytoskeletal dynamics in the early embryo. Curr Biol. 2004;14(16):1462–7.
Article
CAS
PubMed
Google Scholar
Davison A, McDowell GS, Holden JM, Johnson HF, Koutsovoulos GD, Liu MM, Hulpiau P, Van Roy F, Wade CM, Banerjee R, Yang F, Chiba S, Davey JW, Jackson DJ, Levin M, Blaxter ML. Formin is associated with left-right asymmetry in the pond snail and the frog. Curr Biol. 2016;26(5):654–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crampton HE. Reversal of cleavage in a sinistral gastropod. Ann. NY Acad. Sci. 1894;8:167–70.
Article
Google Scholar
Grande C, Patel NH. Lophotrochozoa get into the game: the nodal pathway and left/right asymmetry in bilateria. Cold Spring Harb Symp Quant Biol. 2009;74:281–7.
Article
CAS
PubMed
Google Scholar
Grande C, Patel NH. Nodal signalling is involved in left-right asymmetry in snails. Nature. 2009;457(7232):1007–11.
Article
CAS
PubMed
Google Scholar
Kuroda R. A twisting story: how a single gene twists a snail? Mechanogenetics. Q. Rev. Biophys. 2015;48:445–52.
Article
CAS
PubMed
Google Scholar
Kuroda R, Abe M. Response to ‘Formin, an opinion’. Development. 2020;147(1):dev187435.
Davison A, McDowell GS, Holden JM, Johnson HF, Wade CM, Chiba S, Jackson DJ, Levin M, Blaxter ML. Formin, an opinion. Development. 2020;147(1):dev187427.
Hohagen J, Jackson DJ. An ancient process in a modern mollusc: early development of the shell in lymnaea stagnalis. BMC Developmental Biol. 2013;13:27.
Article
Google Scholar
Shimizu K, Iijima M, Setiamarga DH, Sarashina I, Kudoh T, Asami T, Gittenberger E, Endo K. Left-right asymmetric expression of dpp in the mantle of gastropods correlates with asymmetric shell coiling. Evodevo. 2013;4(1):15.
Article
PubMed
PubMed Central
Google Scholar
Herlitze I, Marie B, Marin F, Jackson DJ. Molecular modularity and asymmetry of the molluscan mantle revealed by a gene expression atlas. Gigascience. 2018;7(6):giy056.
Ishikawa A, Shimizu K, Isowa Y, Takeuchi T, Zhao R, Kito K, Fujie M, Satoh N, Endo K. Functional shell matrix proteins tentatively identified by asymmetric snail shell morphology. Sci Rep. 2020;10(1):9768.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jackson DJ, Degnan BM. The importance of evo-devo to an integrated understanding of molluscan biomineralisation. J Struct Biol. 2016;196(2):67–74.
Article
CAS
PubMed
Google Scholar
Clark MS. Molecular mechanisms of biomineralization in marine invertebrates. J Exp Biol. 2020;223(Pt 11):jeb206961.
Dalesman S, Karnik V, Lukowiak K. Sensory mediation of memory blocking stressors in the pond snail Lymnaea stagnalis. J Exp Biol. 2011;214:2528–33.
Article
PubMed
Google Scholar
Ito E, Kobayashi S, Kojima S, Sadamoto H, Hatakeyama D. Associative learning in the pond snail. Lymnaea stagnalis. Zool Sci. 1999;16:711–23.
Article
Google Scholar
Feng ZP, Zhang Z, van Kesteren RE, Straub VA, van Nierop P, Jin K, Nejatbakhsh N, Goldberg JI, Spencer GE, Yeoman MS, Wildering W, Coorssen JR, Croll RP, Buck LT, Syed NI, Smit AB. Transcriptome analysis of the central nervous system of the mollusc Lymnaea stagnalis. BMC Genomics. 2009;10:451.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kemenes G, Benjamin PR. Lymnaea. Curr Biol. 2009;19(1):R9–11.
Article
CAS
PubMed
Google Scholar
Nestler EJ, Hyman SE. Animal models of neuropsychiatric disorders. Nat Neurosci. 2010;13:1161–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tascedda F, Malagoli D, Accorsi A, Rigillo G, Blom JM, Ottaviani E. Molluscs as models for translational medicine. Med Sci Monit Basic Res. 2015;21:96–9.
Article
PubMed
PubMed Central
Google Scholar
Kojima S, Sunada H, Mita K, Sakakibara M, Lukowiak K, Ito E. Function of insulin in snail brain in associative learning. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2015;201(10):969–81.
Article
CAS
PubMed
Google Scholar
Totani Y, Aonuma H, Oike A, Watanabe T, Hatakeyama D, Sakakibara M, Lukowiak K, Ito E. Monoamines, insulin and the roles they play in associative learning in pond snails. Front Behav Neurosci. 2019;13:65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murakami J, Okada R, Sadamoto H, Kobayashi S, Mita K, Sakamoto Y, Yamagishi M, Hatakeyama D, Otsuka E, Okuta A, Sunada H, Takigami S, Sakakibara M, Fujito Y, Awaji M, Moriyama S, Lukowiak K, Ito E. Involvement of insulin-like peptide in long-term synaptic plasticity and long-term memory of the pond snail Lymnaea stagnalis. J Neurosci. 2013;33(1):371–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pirger Z, Naskar S, László Z, Kemenes G, Reglődi D, Kemenes I. Reversal of age-related learning deficiency by the vertebrate PACAP and IGF-1 in a novel in-vertebrate model of aging: the pond snail (Lymnaea stagnalis). J Gerontol. 2014;69:1331–8.
Kemenes I, Kemenes G, Andrew RJ, Benjamin PR, O’Shea M. Critical time-window for NO-cGMP-dependent long-term memory formation after one-trial appetitive conditioning. J Neurosci. 2002;22(4):1414–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sadamoto H, Sato H, Kobayashi S, Murakami J, Aonuma H, Ando H, Fujito Y, Hamano K, Awaji M, Lukowiak K, Urano A, Ito E. CREB in the pond snail Lymnaea stagnalis: cloning, gene expression, and function in identifiable neurons of the central nervous system. J Neurobiol. 2004;58(4):455–66.
Article
CAS
PubMed
Google Scholar
Alcedo J, Flatt T, Pasyukova EG. Neuronal inputs and outputs of aging and longevity. Front Genet. 2013;4:71.
PubMed
PubMed Central
Google Scholar
Rivi V, Benatti C, Colliva C, Radighieri G, Brunello N, Tascedda F, Blom JMC. Lymnaea stagnalis as model for translational neuroscience research: from pond to bench. Neurosci Biobehav Rev. 2020;108:602–16.
Article
CAS
PubMed
Google Scholar
Feng ZP, Klumperman J, Lukowiak K, Syed NI. In vitro synaptogenesis between the somata of identified Lymnaea neurons requires protein synthesis but not extrinsic growth factors or substrate adhesion molecules. J Neurosci. 1997;17:7839–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aleksic M, Feng ZP. Identification of the role of C/EBP in neurite regeneration following microarray analysis of a L. stagnalis CNS injury model. BMC Neurosci. 2012;13:2.
Fodor I, Urbán P, Kemenes G, Koene JM, Pirger Z. Aging and disease-relevant gene products in the neuronal transcriptome of the great pond snail (Lymnaea stagnalis): a potential model of aging, age-related memory loss, and neurodegenerative diseases. Invert Neurosci. 2020;20(3):9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ford L, Crossley M, Williams T, Thorpe JR, Serpell LC, Kemenes G. Effects of Aβ exposure on long-term associative memory and its neuronal mechanisms in a defined neuronal network. Sci Rep. 2015;5:10614.
Article
PubMed
PubMed Central
Google Scholar
Skála V, Walker AJ, Horák P. Snail defence responses to parasite infection: the Lymnaea stagnalis-Trichobilharzia szidati model. Dev Comp Immunol. 2020;102:103464.
Article
PubMed
CAS
Google Scholar
https://www.who.int/neglected_diseases/en/.
Famakinde DO. Treading the path towards genetic control of snail resistance to schistosome infection. Trop Med Infect Dis. 2018;3(3):E86.
Article
PubMed
Google Scholar
Maier T, Wheeler NJ, Namigai EKO, Tycko J, Grewelle RE, Woldeamanuel Y, Klohe K, Perez-Saez J, Sokolow SH, De Leo GA, Yoshino TP, Zamanian M, Reinhard-Rupp J. Gene drives for schistosomiasis transmission control. PLoS Negl Trop Dis. 2019;13(12):e0007833.
Article
PubMed
PubMed Central
CAS
Google Scholar
Castillo MG, Humphries JE, Mourão MM, Marquez J, Gonzalez A, Montelongo CE. Biomphalaria glabrata immunity: post-genome advances. Dev Comp Immunol. 2020;104:103557.
Article
CAS
PubMed
Google Scholar
Bouetard A, Besnard AL, Vassaux D, Lagadic L, Coutellec MA. Impact of the redox-cycling herbicide diquat on transcript expression and antioxidant enzymatic activities of the freshwater snail Lymnaea stagnalis. Aquatic Toxicology (Amsterdam, Netherlands). 2013;126:256–65.
Article
CAS
Google Scholar
Amorim J, Abreu I, Rodrigues P, Peixoto D, Pinheiro C, Saraiva A, Carvalho AP, Guimarães L, Oliva-Teles L. Lymnaea stagnalis as a freshwater model invertebrate for ecotoxicological studies. Sci Total Environ. 2019;669:11–28.
Article
CAS
PubMed
Google Scholar
Munley KM, Brix KV, Panlilio J, Deforest DK, Grosell M. Growth inhibition in early life-stage tests predicts full life-cycle toxicity effects of lead in the fresh-water pulmonate snail, Lymnaea stagnalis. Aquatic Toxicology (Amsterdam, Netherlands). 2013;28–129:60–6.
Article
CAS
Google Scholar
Evelyn G Reátegui-Zirena, Christopher J Salice. Parental diet affects embryogenesis of the great pond snail (Lymnaea stagnalis) exposed to cadmium, pyraclostrobin, and tributyltin Environ Toxicol Chem. 2018;37(9):2428–38.
Horton AA, Newbold LK, Palacio-Cortés AM, Spurgeon DJ, Pereira MG, Carter H, Gweon HS, Vijver MG, van Bodegom PM, Navarro da Silva MA, Lahive E. Accumulation of polybrominated diphenyl ethers and microbiome response in the great pond snail Lymnaea stagnalis with exposure to nylon (polyamide) microplastics. Ecotoxicol Environ Saf. 2020;188:109882.
Bamze Attoumani R, de Vaufleury A, Crini N, Fatin-Rouge N. Assessing natural clays of a contaminated site to stabilize and reduce the ecotoxicity of a coal tar. Ecotoxicol Environ Saf. 2020;190:110081.
Article
CAS
PubMed
Google Scholar
Liu MM, Davey JW, Banerjee R, Han J, Yang F, Aboobaker A, Blaxter ML, Davison A. Fine mapping of the pond snail left-right asymmetry (chirality) locus using RAD-Seq and fibre-FISH. PLoS ONE. 2013;8(8):e71067.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abe M, Shimizu M, Kuroda R. Expression of exogenous fluorescent proteins in early freshwater pond snail embryos. Dev Genes Evol. 2009;219(3):167–73.
Article
CAS
PubMed
Google Scholar
Nederbragt AJ, van Loon AE, Dictus WJ. Expression of Patella vulgata orthologs of engrailed and dpp-BMP2/4 in adjacent domains during molluscan shell development suggests a conserved compartment boundary mechanism. Dev. Biol. 2002;246:341–55.
Article
CAS
PubMed
Google Scholar
Liu MM, Davey JW, Jackson DJ, Blaxter ML, Davison A. A conserved set of maternal genes? Insights from a molluscan transcriptome. Int J Dev Biol. 2014;58(6–8):501–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lambert JD, Nagy LM. Asymmetric inheritance of centrosomally localized mRNAs during embryonic cleavages. Nature. 2002;420(6916):682–6.
Article
CAS
PubMed
Google Scholar
Takahashi H, Abe M, Kuroda R. GSK3β controls the timing and pattern of the fifth spiral cleavage at the 2-4 cell stage in Lymnaea stagnalis. Dev Genes Evol. 2019;229(2–3):73–81.
Article
PubMed
Google Scholar
Baynes A, Montagut Pino G, Duong GH, Lockyer AE, McDougall C, Jobling S, Routledge EJ. Early embryonic exposure of freshwater gastropods to pharmaceutical 5-alpha-reductase inhibitors results in a surprising open-coiled “banana-shaped” shell. Sci Rep. 2019;9(1):16439.
Article
PubMed
PubMed Central
CAS
Google Scholar
Henry JQ, Perry KJ, Martindale MQ. β-catenin and early development in the gastropod, Crepidula fornicata. Integr Comp Biol. 2010;50(5):707–19.
Article
CAS
PubMed
Google Scholar
Lyons DC, Perry KJ, Henry JQ. Spiralian gastrulation: germ layer formation, morphogenesis, and fate of the blastopore in the slipper snail Crepidula fornicata. Evodevo. 2015;6:24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Korneev SA, Kemenes I, Straub V, Staras K, Korneeva EI, Kemenes G, Benjamin PR, O’Shea M. Suppression of nitric oxide (NO)-dependent behavior by double-stranded RNA-mediated silencing of a neuronal NO synthase gene. J Neurosci. 2002;22(11):RC227.
Rabinowitz JS, Chan XY, Kingsley EP, Duan Y, Lambert JD. Nanos is required in somatic blast cell lineages in the posterior of a mollusk embryo. Curr Biol. 2008;18(5):331–6.
Article
CAS
PubMed
Google Scholar
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teboul L, Murray SA, Nolan PM. Phenotyping first-generation genome editing mutants: a new standard? Mamm Genome. 2017;28(7–8):377–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mehravar M, Shirazi A, Nazari M, Banan M. Mosaicism in CRISPR/Cas9-mediated genome editing. Dev Biol. 2019;445(2):156–62.
Article
CAS
PubMed
Google Scholar
Lu JK, Chen TT, Allen SK, Matsubara T, Burns JC. Production of transgenic dwarf surfclams, Mulinia lateralis, with pantropic retroviral vectors. Proc Natl Acad Sci USA. 1996;93(8):3482–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsai HJ, Lai CH, Yang HS. Sperm as a carrier to introduce an exogenous DNA fragment into the oocyte of Japanese abalone (Haliotis divorsicolor suportexta). Transgenic Res. 1997;6(1):85–95.
Article
CAS
PubMed
Google Scholar
Chen J, Wu C, Zhang B, Cai Z, Wei L, Li Z, Li G, Guo T, Li Y, Guo W, Wang X. PiggyBac transposon-mediated transgenesis in the pacific oyster (Crassostrea gigas)—first time in mollusks. Front Physiol. 2018;9:811.
Article
PubMed
PubMed Central
Google Scholar
Perry KJ, Henry JQ. CRISPR/Cas9-mediated genome modification in the mollusc. Crepidula fornicata. Genesis. 2015;53(2):237–44.
Article
CAS
PubMed
Google Scholar
MolluscDB. https://ensembl.molluscdb.org/index.html.
Schell T, Feldmeyer B, Schmidt H, Greshake B, Tills O, Truebano M, Rundle SD, Paule J, Ebersberger I, Pfenninger M. An annotated draft genome for Radix auricularia (Gastropoda, Mollusca). Genome Biol Evol. 2017;9:3.
Adema Coen M, et al. Whole genome analysis of a schistosomiasis-transmitting freshwater snail. Nat Commun. 2017;8:15451.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davison A, Blaxter ML. An expressed sequence tag survey of gene expression in the pond snail Lymnaea stagnalis, an intermediate vector of trematodes. Parasitology. 2005;130(Pt 5):539–52.
Article
CAS
PubMed
Google Scholar
Sadamoto H, Takahashi H, Okada T, Kenmoku H, Toyota M, Asakawa Y. De novo sequencing and transcriptome analysis of the central nervous system of mollusc Lymnaea stagnalis by deep RNA sequencing. PLoS ONE. 2012;7(8):e42546.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bouétard A, Noirot C, Besnard AL, Bouchez O, Choisne D, Robe E, Klopp C, Lagadic L, Coutellec MA. Pyrosequencing-based transcriptomic resources in the pond snail Lymnaea stagnalis, with a focus on genes involved in molecular response to diquat-induced stress. Ecotoxicology. 2012;21(8):2222–34.
Article
PubMed
CAS
Google Scholar
Jehn J, Gebert D, Pipilescu F, Stern S, Kiefer JST, Hewel C, Rosenkranz D. PIWI genes and piRNAs are ubiquitously expressed in mollusks and show patterns of lineage-specific adaptation. Commun Biol. 2018;1:137.
Article
PubMed
PubMed Central
CAS
Google Scholar