Ocean Biodiversity Information System. https://obis.org/. Accessed 2 Apr 2021.
Teixeira MAL, Nygren A, Ravara A, Vieira PE, Hernández JC, Costa FO. The small polychaete Platynereis dumerilii revealed as a large species complex with fourteen MOTUs in European marine habitats. Eur Surg. 2021;3(4):e64937.
Google Scholar
Wäge J, Valvassori G, Hardege JD, Schulze A, Gambi MC. The sibling polychaetes Platynereis dumerilii and Platynereis massiliensis in the Mediterranean Sea: are phylogeographic patterns related to exposure to ocean acidification? Mar Biol. 2017;164(10):199.
Article
Google Scholar
Kisseleva MI. Dynamique et production de la population de Polychète Platynereis dumerilii dans la biocoenose de la Cystoseira en Mer Noire. “Grigore Antipa.” Trav Mus Natl Hist Nat Grigore Antipa. 1971;11:49–58.
Google Scholar
Popa LO, Popa OP, Krapal A-M, Iorgu EI, Surugiu V. Fine-scale population genetics analysis of Platynereis dumerilii (Polychaeta, Nereididae) in the Black Sea: how do local marine currents drive geographical differentiation? J Exp Zool A Ecol Genet Physiol. 2014;321(1):41–7.
Article
Google Scholar
Bellan G. Contribution à l’étude systématique, bionomique et écologique des Annélides Polychètes de la Méditerranée [Internet]. [Gap]: Louis-Jean; 1964. https://www.worldcat.org/title/contribution-a-letude-systematique-bionomique-et-ecologique-des-annelides-polychetes-de-la-mediterranee/oclc/601454852
Giangrande A. Polychaete zonation and its relation to algal distribution down a vertical cliff in the western Mediterranean (Italy): a structural analysis. J Exp Mar Bio Ecol. 1988;120(3):263–76.
Article
Google Scholar
Giangrande A, Fraschetti S, Terlizzi A. Local recruitment differences in Platynereis dumerilii (Polychaeta, Nereididae) and their consequences for population structure. Ital J Zool. 2002;69(2):133–9.
Article
Google Scholar
Sarda R. Polychaete communities related to plant covering in the médiolittoral and infralittoral zones of the Balearic islands (western méditerranean). Mar Ecol. 1991;12(4):341–60.
Article
Google Scholar
Gambi MC, Lorenti M, Russo GF, Scipione MB, Zupo V. Depth and seasonal distribution of some groups of the vagile fauna of the Posidonia oceanica leaf stratum: structural and trophic analyses. Mar Ecol. 1992;13(1):17–39.
Article
Google Scholar
Scipione MB, Gambi MC, Lorenti M. Vagile fauna of the leaf stratum of Posidonia oceanica and Cymodocea nodosa in the Mediterranean Sea. In: Kuo J, Phillips RC, Walker DI, Kirkman H, editors. Seagrass Biology. 1996, 249–60.
Daly JM. Behavioural and secretory activity during tube construction by Platynereis dumerilii Aud & M. Edw. [Polychaeta: Nereidae]. J Mar Biol Assoc U K. 1973;53(3):521–9.
Article
Google Scholar
Gambi MC, Zupo V, Buia MC, Mazzella L. Feeding ecology of Platynereis dumerilii (Audouin & Milne-Edwards) in the seagrass Posidonia oceanica system: the role of the epiphytic flora (Polychaeta, Nereididae). Ophelia. 2000;53(3):189–202.
Article
Google Scholar
Hempelmann F. Zur Naturgeschichte von Nereis dumerilii. Aud et Edw Zoologica. 1911;25:1–135.
Google Scholar
Lanera P, Gambi MC. Polychaete distribution in some Cymodocea nodosa meadows around the Island of Ischia (Gulf of Naples Italy). Oebalia. 1993;19:89–103.
Google Scholar
Gambi MC, Giangrande A, Martinelli M, Chessa L. Polychaetes of a Posidonia oceanica bed off Sardinia (Italy): spatio-temporal distribution and feeding guild analysis. Sci Mar. 1995;59(2):129–41.
Google Scholar
Bedford AP, Moore PG. Macrofaunal involvement in the sublittoral decay of kelp debris: the polychaete Platynereis dumerilii (Audouin and Milne-Edwards) (Annelida: Polychaeta). Estuar Coast Shelf Sci. 1985;20(2):117–34.
Article
Google Scholar
Grant A. The reproductive cycle of Platynereis dumerilii (audouin & milneedwards) (polychaeta: nereidae) from the firth of clyde. Sarsia. 1989;74(2):79–84.
Article
Google Scholar
Jacobs RPWM, Pierson ES. Zostera marina spathes as a habitat for Platynereis dumerilii (Audouin and Milne-Edwards, 1834). Aquat Bot. 1979;1(6):403–6.
Article
Google Scholar
Zantke J, Ishikawa-Fujiwara T, Arboleda E, Lohs C, Schipany K, Hallay N, et al. Circadian and circalunar clock interactions in a marine annelid. Cell Rep. 2013;5(1):99–113.
Article
CAS
Google Scholar
Fischer A, Dorresteijn A. The polychaete Platynereis dumerilii (Annelida): a laboratory animal with spiralian cleavage, lifelong segment proliferation and a mixed benthic/pelagic life cycle. BioEssays. 2004;26(3):314–25.
Article
Google Scholar
Fischer AH, Henrich T, Arendt D. The normal development of Platynereis dumerilii (Nereididae, Annelida). Front Zool. 2010;30(7):31.
Article
Google Scholar
Hauenschild C, Fischer A. Platynereis dumerilii: mikroskopische Anatomie, Fortpflanzung, Entwicklung. Stuttgart: G. Fischer; 1969. (Grosses zoologisches Praktikum, 10b).
Fischer A. Reproduction and postembryonic development of the annelid Platynereis dumerilii. Film C. 1985;1577.
Kuehn E, Clausen DS, Null RW, Metzger BM, Willis AD, Özpolat BD. Segment number threshold determines juvenile onset of germline cluster proliferation in Platynereis dumerilii. bioRxiv. 2021. https://doi.org/10.1101/2021.04.22.439825v1.
Article
Google Scholar
Meisel J. Zur Hormonabhängigkeit der Spermatogenese bei Platynereis dumerilii: licht-und elektronenmikroskopische Befunde sowie experimentelle Untersuchungen in vivo und in vitro. na; 1990.
Fischer A. Stages and stage distribution in early oogenesis in the Annelid, Platynereis dumerilii. Cell Tissue Res. 1974;156(1):35–45.
Article
CAS
Google Scholar
Fischer A. The structure of symplasmic early oocytes and their enveloping sheath cells in the polychaete, Platynereis dumerilii. Cell Tissue Res. 1975;160(3):327–43.
Article
CAS
Google Scholar
Andreatta G, Broyart C, Borghgraef C, Vadiwala K, Kozin V, Polo A, et al. Corazonin signaling integrates energy homeostasis and lunar phase to regulate aspects of growth and sexual maturation in Platynereis. Proc Natl Acad Sci U S A. 2020. https://doi.org/10.1073/pnas.1910262116.
Article
Google Scholar
Schenk S, Krauditsch C, Frühauf P, Gerner C, Raible F. Discovery of methylfarnesoate as the annelid brain hormone reveals an ancient role of sesquiterpenoids in reproduction. Elife. 2016. https://doi.org/10.7554/eLife.17126.
Article
Google Scholar
Korringa P. Relations between the moon and periodicity in the breeding of marine animals. Ecol Monogr. 1947;17(3):347–81.
Article
Google Scholar
Giangrande A. Cicli vitali dei policheti e relazioni con l’ambiente. Oebalia. 1989;15:157–67.
Google Scholar
Bleidorn C. Recent progress in reconstructing lophotrochozoan (spiralian) phylogeny. Org Divers Evol. 2019. https://doi.org/10.1007/s13127-019-00412-4.
Article
Google Scholar
Marlétaz F, Peijnenburg KTCA, Goto T, Satoh N, Rokhsar DS. A new spiralian phylogeny places the enigmatic arrow worms among Gnathiferans. Curr Biol. 2019. https://doi.org/10.1016/j.cub.2018.11.042.
Article
Google Scholar
Hempelmann F. Zur Naturgeschichte von Nereis dumerilii Aud. et Edw. 1911 Jan 1; https://www.schweizerbart.de/publications/detail/artno/169006200/Zur_Naturgeschichte_von_Nereis_dumerilii_Aud_et_Edw. Accessed 15 Feb 2021.
Hauenschild C. Nachweis der sogenannten atoken Geschlechtsform des Polychaeten Platynereis dumerilii Aud. et M. Edw. als eigene Art auf Grund von Zuchtversuchen. Nachdruck verboten Ubersetzungsr Vor. 1951;107–28.
Moquin-Tandon G. Note sur une nouvelle annelide chetopode hermaphrodite (Nereis massiliensis). Ann Sci Nat. 1869;5(11):134.
Google Scholar
Hauenschild C. Uber das lunarperiodische Schwarmen von Platynereis dumerilii in Laboratoriumszuchten. Naturwissenschaften. 1954;41:556–7. https://doi.org/10.1007/bf00629049.
Article
Google Scholar
Hauenschild C. Lunar periodicity. Cold Spring Harb Symp Quant Biol. 1960;25:491–7.
Article
CAS
Google Scholar
Fischer A, editor. The Helgoland Manual of Animal Development: Notes and Laboratory Protocols on Marine Invertebrates. Pfeil, Dr. Friedrich; 2013.
Kuehn E, Stockinger AW, Girard J, Raible F, Özpolat BD. A scalable culturing system for the marine annelid Platynereis dumerilii. PLoS ONE. 2019;14(12):e0226156.
Article
CAS
Google Scholar
Olive PJW, Wang WB. Cryopreservation of Nereis virens (Polychaeta, Annelida) Larvae: the mechanism of cryopreservation of a differentiated metazoan. Cryobiology. 1997;34(3):284–94.
Article
Google Scholar
Just EE. Breeding habits of the heteronereis form of Platynereis megalops at Woods Hole. Mass Biol Bull. 1914;27(4):201–12.
Article
Google Scholar
Henry JQ. Spiralian model systems. Int J Dev Biol. 2014;58:389–401.
Article
Google Scholar
Sulston JE, Schierenberg E, White JG, Thomson JN. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol. 1983;100(1):64–119.
Article
CAS
Google Scholar
Nishida H, Satoh N. Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. II. The 16- and 32-cell stages. Dev Biol. 1985;110(2):440–54.
Article
CAS
Google Scholar
Nishida H, Stach T. Cell lineages and fate maps in tunicates: conservation and modification. Zoolog Sci. 2014;31(10):645–52.
Article
Google Scholar
Sternberg PW, Félix MA. Evolution of cell lineage. Curr Opin Genet Dev. 1997;7(4):543–50.
Article
CAS
Google Scholar
Guignard L, Fiúza U-M, Leggio B, Laussu J, Faure E, Michelin G, et al. Contact area-dependent cell communication and the morphological invariance of ascidian embryogenesis. Science. 2020. https://doi.org/10.1126/science.aar5663.
Article
Google Scholar
Lambert JD. Developmental patterns in spiralian embryos. Curr Biol. 2010;20(2):R72–7.
Article
CAS
Google Scholar
Hejnol A. A twist in time–the evolution of spiral cleavage in the light of animal phylogeny. Integr Comp Biol. 2010;50(5):695–706.
Article
Google Scholar
Martín-Durán JM, Marlétaz F. Unravelling spiral cleavage. Development. 2020. https://doi.org/10.1242/dev.181081.
Article
Google Scholar
Wilson EB. The cell-lineage of Nereis. A contribution to the cytogeny of the annelid body. J Morphol. 1892;6(3):361–480.
Article
Google Scholar
Ackermann C, Dorresteijn A, Fischer A. Clonal domains in postlarval Platynereis dumerilii (Annelida: Polychaeta). J Morphol. 2005;266(3):258–80.
Article
Google Scholar
Dorresteijn AWC. Quantitative analysis of cellular differentiation during early embryogenesis of Platynereis dumerilii. Rouxs Arch Dev Biol. 1990;199(1):14–30.
Article
Google Scholar
Schneider S, Fischer A, Dorresteijn AWC. A morphometric comparison of dissimilar early development in sibling species of Platynereis (Annelida, Polychaeta). Rouxs Arch Dev Biol. 1992;201(4):243–56.
Article
Google Scholar
Fischer AHL, Arendt D. Mesoteloblast-like mesodermal stem cells in the polychaete annelid Platynereis dumerilii (Nereididae). J Exp Zool B Mol Dev Evol. 2013;320(2):94–104.
Article
Google Scholar
Just EE. The morphology of normal fertilization in Platynereis megalops. J Morphol. 1915;26(2):217–33.
Article
Google Scholar
Kluge B, Lehmann-Greif M, Fischer A. Long-lasting exocytosis and massive structural reorganisation in the egg periphery during cortical reaction in Platynereis dumerilii (Annelida, Polychaeta). Zygote. 1995;3(2):141–56.
Article
CAS
Google Scholar
Özpolat BD, Handberg-Thorsager M, Vervoort M, Balavoine G. Cell lineage and cell cycling analyses of the 4d micromere using live imaging in the marine annelid platynereis dumerilii. Elife. 2017. https://doi.org/10.7554/eLife.30463.
Article
Google Scholar
Achim K, Eling N, Vergara HM, Bertucci PY, Musser J, Vopalensky P, et al. Whole-body single-cell sequencing reveals transcriptional domains in the annelid larval body. Mol Biol Evol. 2018;35(5):1047–62.
Article
CAS
Google Scholar
Rebscher N, Lidke AK, Ackermann CF. Hidden in the crowd: primordial germ cells and somatic stem cells in the mesodermal posterior growth zone of the polychaete Platynereis dumerilii are two distinct cell populations. EvoDevo. 2012;18(3):9.
Article
Google Scholar
Vopalensky P, Tosches MA, Achim K, Handberg-Thorsager M, Arendt D. From spiral cleavage to bilateral symmetry: the developmental cell lineage of the annelid brain. BMC Biol. 2019;17(1):81.
Article
Google Scholar
Chou H-C, Pruitt MM, Bastin BR, Schneider SQ. A transcriptional blueprint for a spiral-cleaving embryo. BMC Genomics. 2016;5(17):552.
Article
CAS
Google Scholar
Chou H-C, Acevedo-Luna N, Kuhlman JA, Schneider SQ. PdumBase: a transcriptome database and research tool for Platynereis dumerilii and early development of other metazoans. BMC Genomics. 2018;19(1):618.
Article
CAS
Google Scholar
Levin M, Anavy L, Cole AG, Winter E, Mostov N, Khair S, et al. The mid-developmental transition and the evolution of animal body plans. Nature. 2016;531(7596):637–41.
Article
CAS
Google Scholar
Bastin BR, Chou H-C, Pruitt MM, Schneider SQ. Structure, phylogeny, and expression of the frizzled-related gene family in the lophotrochozoan annelid Platynereis dumerilii. EvoDevo. 2015;4(6):37.
Article
CAS
Google Scholar
Marioni JC, Arendt D. How single-cell genomics is changing evolutionary and developmental biology. Annu Rev Cell Dev Biol. 2017;6(33):537–53.
Article
CAS
Google Scholar
Nakama AB, Chou H-C, Schneider SQ. The asymmetric cell division machinery in the spiral-cleaving egg and embryo of the marine annelid Platynereis dumerilii. BMC Dev Biol. 2017;17(1):16.
Article
CAS
Google Scholar
Hsieh Y-W. Cellular, Cytoskeletal, and Biophysical Mechanisms of Spiral Cleavage during Platynereis dumerilii Embryogenesis [Internet] [PhD]. Tomancak P, editor. Technische Universität Dresden; 2020. https://tud.qucosa.de/api/qucosa%3A72836/attachment/ATT-0/
Dorresteijn AWC, Eich P. Experimental change of cytoplasmic composition can convert determination of blastomeres in Platynereis dumerilii (Annelida, Polychaeta). Rouxs Arch Dev Biol. 1991;200(6):342–51.
Article
Google Scholar
Dorresteijn AWC, Bornewasser H, Fischer A. A correlative study of experimentally changed first cleavage and Janus development in the trunk of Platynereis dumerilii (Annelida, Polychaeta). Rouxs Arch Dev Biol. 1987;196(1):51–8.
Article
Google Scholar
Schneider SQ, Bowerman B. beta-Catenin asymmetries after all animal/vegetal- oriented cell divisions in Platynereis dumerilii embryos mediate binary cell-fate specification. Dev Cell. 2007;13(1):73–86.
Article
CAS
Google Scholar
Pruitt MM, Letcher EJ, Chou H-C, Bastin BR, Schneider SQ. Expression of the wnt gene complement in a spiral-cleaving embryo and trochophore larva. Int J Dev Biol. 2014;58(6–8):563–73.
Article
CAS
Google Scholar
Pfeifer K, Schaub C, Domsch K, Dorresteijn A, Wolfstetter G. Maternal inheritance of twist and analysis of MAPK activation in embryos of the polychaete annelid Platynereis dumerilii. PLoS ONE. 2014. https://doi.org/10.1371/journal.pone.0096702.
Article
Google Scholar
Marlow H, Tosches MA, Tomer R, Steinmetz PR, Lauri A, Larsson T, et al. Larval body patterning and apical organs are conserved in animal evolution. BMC Biol. 2014;29(12):7.
Article
CAS
Google Scholar
Williams EA, Verasztó C, Jasek S, Conzelmann M, Shahidi R, Bauknecht P, et al. Synaptic and peptidergic connectome of a neurosecretory center in the annelid brain. Elife. 2017. https://doi.org/10.7554/eLife.26349.
Article
Google Scholar
Tessmar-Raible K, Raible F, Christodoulou F, Guy K, Rembold M, Hausen H, et al. Conserved sensory-neurosecretory cell types in annelid and fish forebrain: insights into hypothalamus evolution. Cell. 2007;129(7):1389–400.
Article
CAS
Google Scholar
Arendt D, Technau U, Wittbrodt J. Evolution of the bilaterian larval foregut. Nature. 2001;409(6816):81–5.
Article
CAS
Google Scholar
Nielsen C. How did indirect development with planktotrophic larvae evolve? Biol Bull. 2009;216(3):203–15.
Article
Google Scholar
Jékely G, Colombelli J, Hausen H, Guy K, Stelzer E, Nédélec F, et al. Mechanism of phototaxis in marine zooplankton. Nature. 2008;456(7220):395–9.
Article
CAS
Google Scholar
Bezares-Calderón LA, Berger J, Jasek S, Verasztó C, Mendes S, Gühmann M, et al. Neural circuitry of a polycystin-mediated hydrodynamic startle response for predator avoidance. Elife. 2018. https://doi.org/10.7554/eLife.36262.
Article
Google Scholar
Tosches MA, Bucher D, Vopalensky P, Arendt D. Melatonin signaling controls circadian swimming behavior in marine zooplankton. Cell. 2014;159(1):46–57.
Article
CAS
Google Scholar
Conzelmann M, Offenburger S-L, Asadulina A, Keller T, Münch TA, Jékely G. Neuropeptides regulate swimming depth of Platynereis larvae. Proc Natl Acad Sci USA. 2011;108(46):E1174–83.
Article
CAS
Google Scholar
Verasztó C, Ueda N, Bezares-Calderón LA, Panzera A, Williams EA, Shahidi R, et al. Ciliomotor circuitry underlying whole-body coordination of ciliary activity in the larva. Elife. 2017. https://doi.org/10.7554/eLife.26000.
Article
Google Scholar
Randel N, Bezares-Calderón LA, Gühmann M, Shahidi R, Jékely G. Expression dynamics and protein localization of rhabdomeric opsins in Platynereis larvae. Integr Comp Biol. 2013;53(1):7–16.
Article
CAS
Google Scholar
Ayers T, Tsukamoto H, Gühmann M, Veedin Rajan VB, Tessmar-Raible K. A G-type opsin mediates the shadow reflex in the annelid Platynereis dumerilii. BMC Biol. 2018;16(1):41.
Article
CAS
Google Scholar
Gühmann M, Jia H, Randel N, Verasztó C, Bezares-Calderón LA, Michiels NK, et al. Spectral tuning of phototaxis by a Go-Opsin in the rhabdomeric eyes of Platynereis. Curr Biol. 2015;25(17):2265–71.
Article
CAS
Google Scholar
Backfisch B, Veedin Rajan VB, Fischer RM, Lohs C, Arboleda E, Tessmar-Raible K, et al. Stable transgenesis in the marine annelid Platynereis dumerilii sheds new light on photoreceptor evolution. Proc Natl Acad Sci USA. 2013;110(1):193–8.
Article
CAS
Google Scholar
Verasztó C, Gühmann M, Jia H, Rajan VBV, Bezares-Calderón LA, Piñeiro-Lopez C, et al. Ciliary and rhabdomeric photoreceptor-cell circuits form a spectral depth gauge in marine zooplankton. Elife. 2018. https://doi.org/10.7554/eLife.36440.
Article
Google Scholar
Tsukamoto H, Chen I-S, Kubo Y, Furutani Y. A ciliary opsin in the brain of a marine annelid zooplankton is ultraviolet-sensitive, and the sensitivity is tuned by a single amino acid residue. J Biol Chem. 2017;292(31):12971–80.
Article
CAS
Google Scholar
Arendt D, Tessmar-Raible K, Snyman H, Dorresteijn AW, Wittbrodt J. Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. e-Neuroforum. 2005. https://doi.org/10.1515/nf-2005-0106.
Article
Google Scholar
Conzelmann M, Jékely G. Antibodies against conserved amidated neuropeptide epitopes enrich the comparative neurobiology toolbox. EvoDevo. 2012;3(1):23.
Article
CAS
Google Scholar
Conzelmann M, Williams EA, Tunaru S, Randel N, Shahidi R, Asadulina A, et al. Conserved MIP receptor-ligand pair regulates Platynereis larval settlement. Proc Natl Acad Sci USA. 2013;110(20):8224–9.
Article
CAS
Google Scholar
Randel N, Asadulina A, Bezares-Calderón LA, Verasztó C, Williams EA, Conzelmann M, et al. Neuronal connectome of a sensory-motor circuit for visual navigation. Elife. 2014. https://doi.org/10.7554/eLife.02730.
Article
Google Scholar
Chartier TF, Deschamps J, Dürichen W, Jékely G, Arendt D. Whole-head recording of chemosensory activity in the marine annelid Platynereis dumerilii. Open Biol. 2018;8:180139. https://doi.org/10.1098/rsob.180139.
Article
CAS
Google Scholar
Williams EA, Conzelmann M, Jékely G. Myoinhibitory peptide regulates feeding in the marine annelid Platynereis. Front Zool. 2015;12(1):1.
Article
CAS
Google Scholar
Hadfield MG, Meleshkevitch EA, Boudko DY. The apical sensory organ of a gastropod veliger is a receptor for settlement cues. Biol Bull. 2000;198(1):67–76.
Article
CAS
Google Scholar
Brunet T, Fischer AH, Steinmetz PR, Lauri A, Bertucci P, Arendt D. The evolutionary origin of bilaterian smooth and striated myocytes. Elife. 2016. https://doi.org/10.7554/eLife.19607.
Article
Google Scholar
Lauri A, Brunet T, Handberg-Thorsager M, Fischer AHL, Simakov O, Steinmetz PRH, et al. Development of the annelid axochord: insights into notochord evolution. Science. 2014;345(6202):1365–8.
Article
CAS
Google Scholar
Tomer R, Denes AS, Tessmar-Raible K, Arendt D. Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium. Cell. 2010;142(5):800–9.
Article
CAS
Google Scholar
Vergara HM, Pape C, Meechan K, Zinchenko V, Genoud C, Wanner AA, et al. Whole-body integration of gene expression and single-cell morphology. Cell. 2021;184:1–19.
Article
CAS
Google Scholar
Verasztó C, Jasek S, Gühmann M, Shahidi R, Ueda N, Beard JD, et al. Whole-animal connectome and cell-type complement of the three-segmented Platynereis dumerilii larva. Cold Spring Harb Lab. 2020. https://doi.org/10.1101/2020.08.21.260984v2.abstract.
Article
Google Scholar
Achim K, Pettit J-B, Saraiva LR, Gavriouchkina D, Larsson T, Arendt D, et al. High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nat Biotechnol. 2015;33(5):503–9.
Article
CAS
Google Scholar
Vergara HM, Bertucci PY, Hantz P, Tosches MA, Achim K, Vopalensky P, et al. Whole-organism cellular gene-expression atlas reveals conserved cell types in the ventral nerve cord of. Proc Natl Acad Sci USA. 2017;114(23):5878–85.
Article
CAS
Google Scholar
Asadulina A, Panzera A, Verasztó C, Liebig C, Jékely G. Whole-body gene expression pattern registration in Platynereis larvae. EvoDevo. 2012;3(1):27.
Article
CAS
Google Scholar
Randel N, Shahidi R, Verasztó C, Bezares-Calderón LA, Schmidt S, Jékely G. Inter-individual stereotypy of the Platynereis larval visual connectome. Elife. 2015;4:e08069.
Article
Google Scholar
Shahidi R, Williams EA, Conzelmann M, Asadulina A, Verasztó C, Jasek S, et al. A serial multiplex immunogold labeling method for identifying peptidergic neurons in connectomes. Elife. 2015. https://doi.org/10.7554/eLife.11147.
Article
Google Scholar
Häfker NS, Tessmar-Raible K. Rhythms of behavior: are the times changin’? Curr Opin Neurobiol. 2020;60:55–66.
Article
CAS
Google Scholar
Häfker NS, Meyer B, Last KS, Pond DW, Hüppe L, Teschke M. Circadian clock involvement in zooplankton diel vertical migration. Curr Biol. 2017;27(14):2194–201.
Article
CAS
Google Scholar
Arboleda E, Zurl M, Waldherr M, Tessmar-Raible K. Differential impacts of the head on Platynereis dumerilii peripheral circadian rhythms. Front Physiol. 2019;11(10):900.
Article
Google Scholar
Zurl M, Poehn B, Rieger D, Krishnan S, Rokvic D, Rajan VBV, et al. Two light sensors decode moonlight versus sunlight to adjust a plastic circadian/circalunidian clock to moon phase. bioRxiv. 2021. https://doi.org/10.1101/2021.04.16.440114v1.
Article
Google Scholar
Andreatta G, Tessmar-Raible K. The still dark side of the moon: molecular mechanisms of lunar-controlled rhythms and clocks. J Mol Biol. 2020;432(12):3525–46.
Article
CAS
Google Scholar
Schenk S, Bannister SC, Sedlazeck FJ, Anrather D, Minh BQ, Bileck A, et al. Combined transcriptome and proteome profiling reveals specific molecular brain signatures for sex, maturation and circalunar clock phase. Elife. 2019. https://doi.org/10.7554/eLife.41556.
Article
Google Scholar
Poehn B, Krishnan S, Zurl M, Coric A, Rokvic D, Arboleda E, et al. A Cryptochrome adopts distinct moon- and sunlight states and functions as moonlight interpreter in monthly oscillator entrainment. bioRxiv. 2021. https://doi.org/10.1101/2021.04.16.439809v1.
Article
Google Scholar
Rajan VBV, Sören Häfker N, Arboleda E, Poehn B, Gossenreiter T, Gerrard E, et al. Seasonal variation in UVA light drives hormonal and behavioural changes in a marine annelid via a ciliary opsin. Nat Ecol Evol. 2021;5(2):204–18.
Article
Google Scholar
Meyer B, Hüppe L, Payton L. Timing requires the right amount and type of light. Nat Ecol Evol. 2021;5(2):153–4.
Article
Google Scholar
de Rosa R, Prud’homme B, Balavoine G. Caudal and even-skipped in the annelid Platynereis dumerilii and the ancestry of posterior growth. Evol Dev. 2005;7(6):574–87.
Article
Google Scholar
Kimelman D, Martin BL. Anterior-posterior patterning in early development: three strategies: anterior-posterior patterning in early development. Wiley Interdiscip Rev Dev Biol. 2012;1(2):253–66.
Article
CAS
Google Scholar
Fritzenwanker JH, Uhlinger KR, Gerhart J, Silva E, Lowe CJ. Untangling posterior growth and segmentation by analyzing mechanisms of axis elongation in hemichordates. Proc Natl Acad Sci USA. 2019;116(17):8403–8.
Article
CAS
Google Scholar
Constantinou SJ, Duan N, Nagy LM, Chipman AD, Williams TA. Elongation during segmentation shows axial variability, low mitotic rates, and synchronized cell cycle domains in the crustacean, Thamnocephalus platyurus. EvoDevo. 2020;18(11):1.
Article
CAS
Google Scholar
Gazave E, Béhague J, Laplane L, Guillou A, Préau L, Demilly A, et al. Posterior elongation in the annelid Platynereis dumerilii involves stem cells molecularly related to primordial germ cells. Dev Biol. 2013;382(1):246–67.
Article
CAS
Google Scholar
Pfeifer K, Dorresteijn AWC, Fröbius AC. Activation of Hox genes during caudal regeneration of the polychaete annelid Platynereis dumerilii. Dev Genes Evol. 2012;222(3):165–79.
Article
CAS
Google Scholar
Rebscher N, Zelada-González F, Banisch TU, Raible F, Arendt D. Vasa unveils a common origin of germ cells and of somatic stem cells from the posterior growth zone in the polychaete Platynereis dumerilii. Dev Biol. 2007;306(2):599–611.
Article
CAS
Google Scholar
Juliano CE, Swartz SZ, Wessel GM. A conserved germline multipotency program. Development. 2010;137(24):4113–26.
Article
CAS
Google Scholar
Leclère L, Jager M, Barreau C, Chang P, Le Guyader H, Manuel M, et al. Maternally localized germ plasm mRNAs and germ cell/stem cell formation in the cnidarian Clytia. Dev Biol. 2012;364(2):236–48.
Article
CAS
Google Scholar
Alié A, Hayashi T, Sugimura I, Manuel M, Sugano W, Mano A, et al. The ancestral gene repertoire of animal stem cells. Proc Natl Acad Sci USA. 2015;112(51):E7093–100.
Article
CAS
Google Scholar
Fierro-Constaín L, Schenkelaars Q, Gazave E, Haguenauer A, Rocher C, Ereskovsky A, et al. The conservation of the germline multipotency program, from sponges to vertebrates: a stepping stone to understanding the somatic and germline origins. Genome Biol Evol. 2017;9(3):474–88.
Google Scholar
Özpolat BD, Bely AE. Developmental and molecular biology of annelid regeneration: a comparative review of recent studies. Curr Opin Genet Dev. 2016;40:144–53. https://doi.org/10.1016/j.gde.2016.07.010.
Article
CAS
Google Scholar
Hofmann DK. Regeneration and endocrinology in the polychaete Platynereis dumerilii. Wilhelm Roux’s Arch Dev Biol. 1976;180(1):47–71.
Article
CAS
Google Scholar
Bely AE. Distribution of segment regeneration ability in the Annelida. Integr Comp Biol. 2006;46(4):508–18.
Article
Google Scholar
Bideau L, Kerner P, Hui J, Vervoort M, Gazave E. Animal regeneration in the era of transcriptomics. Cell Mol Life Sci. 2021. https://doi.org/10.1007/s00018-021-03760-7.
Article
Google Scholar
Planques A, Malem J, Parapar J, Vervoort M, Gazave E. Morphological, cellular and molecular characterization of posterior regeneration in the marine annelid Platynereis dumerilii. Dev Biol. 2019;445:189–210. https://doi.org/10.1016/j.ydbio.2018.11.004.
Article
CAS
Google Scholar
Planques A, Kerner P, Ferry L, Grunau C, Gazave E, Vervoort M. DNA methylation atlas and machinery in the developing and regenerating annelid Platynereis dumerilii. BMC Biol. 2021;19(1):148.
Article
Google Scholar
Grimmel J, Dorresteijn AWC, Fröbius AC. Formation of body appendages during caudal regeneration in Platynereis dumerilii: adaptation of conserved molecular toolsets. EvoDevo. 2016;12(7):10.
Article
Google Scholar
Yun MH. Changes in regenerative capacity through lifespan. Int J Mol Sci. 2015;16(10):25392–432.
Article
CAS
Google Scholar
Harms JW. Über ein inkretorisches Cerebralorgan bei Lumbriciden, sowie. Wilhelm Roux Arch Entwickl Mech Org. 1948;143(3–4):332–46.
Article
Google Scholar
Rebscher N. Establishing the germline in spiralian embryos. Int J Dev Biol. 2014;58(6–8):403–11.
Article
Google Scholar
Zelada González YF. Germline development in Platynereis dumerilii and its connection to embryonic patterning [Internet]. 2005. http://archiv.ub.uni-heidelberg.de/volltextserver/5432/. Accessed 12 Aug 2018
Hauenschild C. Normalisierung der geschlechtlichen Entwicklung kopfloser Fragmente junger ♀♀ von Platynereis dumerilii (Polychaeta) durch Behandlung mit konservierten Prostomien juveniler Individuen. Helgoländer Meeresun. 1974;26(1):63–81.
Article
Google Scholar
Schenk S, Hoeger U. Annelid coelomic fluid proteins. In: Hoeger U, Harris JR, editors. Vertebrate and invertebrate respiratory proteins, lipoproteins and other body fluid proteins. Cham: Springer; 2020. p. 1–34.
Google Scholar
Jha AN, Hutchinson TH, Mackay JM, Elliott BM, Pascoe PL, Dixon DR. The chromosomes Of Platynereis dumerilii (Polychaeta: Nereidae). J Mar Biol Assoc UK. 1995;75(3):551–62.
Article
Google Scholar
García-Alonso J, Ayoola JAO, Crompton J, Rebscher N, Hardege JD. Development and maturation in the nereidid polychaetes Platynereis dumerilii and Nereis succinea exposed to xenoestrogens. Comp Biochem Physiol C Toxicol Pharmacol. 2011;154(3):196–203.
Article
CAS
Google Scholar
Hardege JD, Müller CT, Beckmann M, Bartels Hardege HD, Bentley MG. Timing of reproduction in marine polychaetes: the role of sex pheromones. Écoscience. 1998;5(3):395–404.
Article
Google Scholar
Hardege JD. Nereidid polychaetes as model organisms for marine chemical ecology. Hydrobiologia. 1999;402:145–61.
Article
CAS
Google Scholar
Zeeck E, Harder T, Beckmann M. Uric acid: the sperm-release pheromone of the marine polychaete Platynereis dumerilii. J Chem Ecol. 1998;24(1):13–22.
Article
CAS
Google Scholar
Der HC. hormonale einfluss des Gehirns auf die sexuelle Entwicklung bei dem polychaeten Platynereis dumerilii. Gen Comp Endocrinol. 1966;6(1):26–73.
Article
Google Scholar
Leitz T. Metamorphosin A and related compounds: a novel family of neuropeptides with morphogenic activity. Ann N Y Acad Sci. 1998;839:105–10.
Article
CAS
Google Scholar
Zeeck E, Hardege J, Bartels-Hardege H. Sex pheromones and reproductive isolation in two nereid species, Nereis succinea and Platynereis dumerilii. Mar Ecol Prog Ser. 1990;67(2):183–8.
Article
CAS
Google Scholar
Zeeck E, Harder T, Beckmann M, Müller CT. Marine gamete-release pheromones. Nature. 1996;382(6588):214–214.
Article
CAS
Google Scholar
Röhl I, Schneider B, Schmidt B, Zeeck E. ʟ-Ovothiol A: the egg release pheromone of the marine polychaete Platynereis dumerilii: Annelida: Polychaeta. Verlag der Zeitschrift für Naturforschung. 1999. https://doi.org/10.1515/znc-1999-1222.
Article
Google Scholar
Boilly-Marer Y, Lassalle B. Electrophysiological responses of Heteronereis stimulated with sex pheromones (Annelida polychaeta). J Exp Zool. 1978;205(1):119–24.
Article
Google Scholar
Hardege JD, Bartels-Hardege H, Müller CT, Beckmann M. Peptide pheromones in female Nereis succinea. Peptides. 2004;25(9):1517–22.
Article
CAS
Google Scholar
Torres JP, Lin Z, Watkins M, Salcedo PF, Baskin RP, Elhabian S, et al. Small-molecule mimicry hunting strategy in the imperial cone snail, Conus imperialis. Sci Adv. 2021. https://doi.org/10.1126/sciadv.abf2704.
Article
Google Scholar
Gambi MC, Ramella L, Sella G, Protto P, Aldieri E. Variation in genome size in benthic polychaetes: systematic and ecological relationships. J Mar Biol Assoc U K. 1997;77(4):1045–57.
Article
Google Scholar
Zantke J, Bannister S, Rajan VBV, Raible F, Tessmar-Raible K. Genetic and genomic tools for the marine annelid Platynereis dumerilii. Genetics. 2014;197(1):19–31.
Article
CAS
Google Scholar
Soldi R, Ramella L, Gambi M, Sordino P, Sella G. Genome size in polychaetes: relationship with body length and life habit. In: Dauvin JC, Laubier L, Reish DJ, editors. Paris: Editions du Museum National d’Histoire Naturelle; 1994, 129–35.
Tarallo A, Gambi MC, D’Onofrio G. Lifestyle and DNA base composition in polychaetes. Physiol Genomics. 2016;48(12):883–8.
Article
CAS
Google Scholar
Boore JL. Complete mitochondrial genome sequence of the polychaete annelid Platynereis dumerilii. Mol Biol Evol. 2001;18(7):1413–6.
Article
CAS
Google Scholar
Kara J, Santos CSG, Macdonald AHH, Simon CA. Resolving the taxonomic identities and genetic structure of two cryptic Platynereis Kinberg species from South Africa. Invertebr Syst. 2020;34(6):618–36.
Google Scholar
Conzelmann M, Williams EA, Krug K, Franz-Wachtel M, Macek B, Jékely G. The neuropeptide complement of the marine annelid Platynereis dumerilii. BMC Genomics. 2013;20(14):906.
Article
CAS
Google Scholar
Altincicek B, Vilcinskas A. Analysis of the immune-related transcriptome of a lophotrochozoan model, the marine annelid Platynereis dumerilii. Front Zool. 2007;6(4):18.
Article
CAS
Google Scholar
Simakov O, Kawashima T, Marlétaz F, Jenkins J, Koyanagi R, Mitros T, et al. Hemichordate genomes and deuterostome origins. Nature. 2015;527(7579):459–65.
Article
CAS
Google Scholar
Putnam NH, Butts T, Ferrier DEK, Furlong RF, Hellsten U, Kawashima T, et al. The amphioxus genome and the evolution of the chordate karyotype. Nature. 2008;453(7198):1064–71.
Article
CAS
Google Scholar
Chipman AD, Ferrier DEK, Brena C, Qu J, Hughes DST, Schröder R, et al. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima. PLoS Biol. 2014;12(11):e1002005.
Article
CAS
Google Scholar
Simakov O, Marletaz F, Cho S-J, Edsinger-Gonzales E, Havlak P, Hellsten U, et al. Insights into bilaterian evolution from three spiralian genomes. Nature. 2013;493(7433):526–31.
Article
CAS
Google Scholar
Wang S, Zhang J, Jiao W, Li J, Xun X, Sun Y, et al. Scallop genome provides insights into evolution of bilaterian karyotype and development. Nat Ecol Evol. 2017;1(5):120.
Article
Google Scholar
Raible F, Tessmar-Raible K, Osoegawa K, Wincker P, Jubin C, Balavoine G, et al. Vertebrate-type intron-rich genes in the marine annelid Platynereis dumerilii. Science. 2005;310(5752):1325–6.
Article
CAS
Google Scholar
Hui JHL, McDougall C, Monteiro AS, Holland PWH, Arendt D, Balavoine G, et al. Extensive chordate and annelid macrosynteny reveals ancestral homeobox gene organization. Mol Biol Evol. 2012;29(1):157–65.
Article
CAS
Google Scholar
Janssen R, Le Gouar M, Pechmann M, Poulin F, Bolognesi R, Schwager EE, et al. Conservation, loss, and redeployment of Wnt ligands in protostomes: implications for understanding the evolution of segment formation. BMC Evol Biol. 2010;1(10):374.
Article
CAS
Google Scholar
André A, Ruivo R, Capitão A, Froufe E, Páscoa I, Costa Castro LF, et al. Cloning and functional characterization of a retinoid X receptor orthologue in Platynereis dumerilii: an evolutionary and toxicological perspective. Chemosphere. 2017;182:753–61.
Article
CAS
Google Scholar
Handberg-Thorsager M, Gutierrez-Mazariegos J, Arold ST, Nadendla EK, Bertucci PY, Germain P, et al. The ancestral retinoic acid receptor was a low-affinity sensor triggering neuronal differentiation. Sci Adv. 2018;4(2):eaao1261.
Article
CAS
Google Scholar
Gazave E, Lemaître QIB, Balavoine G. The Notch pathway in the annelid Platynereis: insights into chaetogenesis and neurogenesis processes. Open Biol. 2017. https://doi.org/10.1098/rsob.160242.
Article
Google Scholar
Gazave E, Guillou A, Balavoine G. History of a prolific family: the Hes/Hey-related genes of the annelid Platynereis. EvoDevo. 2014;5:29.
Article
CAS
Google Scholar
Christodoulou F, Raible F, Tomer R, Simakov O, Trachana K, Klaus S, et al. Ancient animal microRNAs and the evolution of tissue identity. Nature. 2010;463(7284):1084–8.
Article
CAS
Google Scholar
Simionato E, Kerner P, Dray N, Le Gouar M, Ledent V, Arendt D, et al. atonal- and achaete-scute-related genes in the annelid Platynereis dumerilii: insights into the evolution of neural basic-Helix-Loop-Helix genes. BMC Evol Biol. 2008;9(8):170.
Article
CAS
Google Scholar
Kerner P, Simionato E, Le Gouar M, Vervoort M. Orthologs of key vertebrate neural genes are expressed during neurogenesis in the annelid Platynereis dumerilii. Evol Dev. 2009;11(5):513–24.
Article
CAS
Google Scholar
Demilly A, Steinmetz P, Gazave E, Marchand L, Vervoort M. Involvement of the Wnt/β-catenin pathway in neurectoderm architecture in Platynereis dumerilii. Nat Commun. 2013;4:1915.
Article
CAS
Google Scholar
Bauknecht P, Jékely G. Large-scale combinatorial deorphanization of Platynereis neuropeptide GPCRs. Cell Rep. 2015;12(4):684–93.
Article
CAS
Google Scholar
Bauknecht P, Jékely G. Ancient coexistence of norepinephrine, tyramine, and octopamine signaling in bilaterians. BMC Biol. 2017;15(1):6.
Article
CAS
Google Scholar
Lidke AK, Bannister S, Löwer AM, Apel DM, Podleschny M, Kollmann M, et al. 17β-Estradiol induces supernumerary primordial germ cells in embryos of the polychaete Platynereis dumerilii. Gen Comp Endocrinol. 2014;196:52–61.
Article
CAS
Google Scholar
Hui JHL, Raible F, Korchagina N, Dray N, Samain S, Magdelenat G, et al. Features of the ancestral bilaterian inferred from Platynereis dumerilii ParaHox genes. BMC Biol. 2009;23(7):43.
Article
CAS
Google Scholar
Bellan G. Relationship of pollution to rocky substratum polychaetes on the French Mediterranean coast. Mar Pollut Bull. 1980;11(11):318–21.
Article
Google Scholar
Hutchinson TH, Jha AN, Dixon DR. The polychaete Platynereis dumerilii (Audouin and Milne-Edwards): a new species for assessing the hazardous potential of chemicals in the marine environment. Ecotoxicol Environ Saf. 1995;31(3):271–81.
Article
CAS
Google Scholar
Palau-Casellas A, Hutchinson TH. Acute toxicity of chlorinated organic chemicals to the embryos and larvae of the marine worm Platynereis dumerilii (Polychaeta: Nereidae). Environ Toxicol Water Qual. 1998;13(2):149–55.
Article
CAS
Google Scholar
Jha AN, Hutchinson TH, Mackay JM, Elliott BM, Dixons DR. Evaluation of the genotoxicity of municipal sewage effluent using the marine worm Platynereis dumerilii (Polychaeta: Nereidae). Mutat Res. 1997;391(3):179–88.
Article
CAS
Google Scholar
Yang M, Zhang X. Comparative developmental toxicity of new aromatic halogenated DBPs in a chlorinated saline sewage effluent to the marine polychaete Platynereis dumerilii. Environ Sci Technol. 2013;47(19):10868–76.
Article
CAS
Google Scholar
García-Alonso J, Rodriguez-Sanchez N, Misra SK, Valsami-Jones E, Croteau M-N, Luoma SN, et al. Toxicity and accumulation of silver nanoparticles during development of the marine polychaete Platynereis dumerilii. Sci Total Environ. 2014;1(476–477):688–95.
Article
CAS
Google Scholar
Beckmann M, Hardege JD, Zeeck E. Effects of the volatile fraction of crude oil on spawning behaviour of nereids (Annelida, Polychaeta). Mar Environ Res. 1995;40(3):267–76.
Article
CAS
Google Scholar
Müller CT, Priesnitz FM, Beckmann M. Pheromonal communication in Nereids and the likely intervention by petroleum derived pollutants. Integr Comp Biol. 2005;45(1):189–93.
Article
Google Scholar
Helm C, Adamo H, Hourdez S, Bleidorn C. An immunocytochemical window into the development of Platynereis massiliensis (Annelida, Nereididae). Int J Dev Biol. 2014;58(6–8):613–22.
Article
Google Scholar
Çinar ME, Dagli E, Kurt G. Check-List of Annelida from the Coasts of Turkey. 2014;38(6). https://www.researchgate.net/publication/265049620_Check-List_of_Annelida_from_the_Coasts_of_Turkey. Accessed 5 Apr 2021
Mikac B. A sea of worms: polychaete checklist of the Adriatic Sea. Zootaxa. 2015;7(3943):1–172.
Article
Google Scholar
Valvassori G, Massa-Gallucci A, Gambi MC. Reappraisal of Platynereis massiliensis (Moquin-Tandon) (Annelida, Nereididae), a neglected sibling species of Platynereis dumerilii (Audouin & Milne Edwards). Biologia Marina. 2015;22(1):113–6.
Google Scholar
Rasmussen E. Systematics and ecology of the Isefjord marine fauna (Denmark). Ophelia. 1973;11(1):1–507.
Article
Google Scholar
Calosi P, Rastrick SPS, Lombardi C, de Guzman HJ, Davidson L, Jahnke M, et al. Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO2 vent system. Philos Trans R Soc Lond B Biol Sci. 2013;368(1627):20120444.
Article
CAS
Google Scholar
Lucey NM, Lombardi C, DeMarchi L, Schulze A, Gambi MC, Calosi P. To brood or not to brood: are marine invertebrates that protect their offspring more resilient to ocean acidification? Sci Rep. 2015;9(5):12009.
Article
Google Scholar
Ricevuto E, Kroeker KJ, Ferrigno F, Micheli F, Gambi MC. Spatio-temporal variability of polychaete colonization at volcanic CO2 vents indicates high tolerance to ocean acidification. Mar Biol. 2014;161(12):2909–19.
Article
CAS
Google Scholar
Gambi MC, Musco L, Giangrande A, Badalamenti F, Micheli F, Kroeker KJ. Distribution and functional traits of polychaetes in a CO2 vent system: winners and losers among closely related species. Mar Ecol Prog Ser. 2016;25(550):121–34.
Article
CAS
Google Scholar
Ricevuto E, Benedetti M, Regoli F, Spicer JI, Gambi MC. Antioxidant capacity of polychaetes occurring at a natural CO2 vent system: results of an in situ reciprocal transplant experiment. Mar Environ Res. 2015;112(Pt A):44–51.
Article
CAS
Google Scholar
Ricevuto E, Vizzini S, Gambi MC. Ocean acidification effects on stable isotope signatures and trophic interactions of polychaete consumers and organic matter sources at a CO2 shallow vent system. J Exp Mar Bio Ecol. 2015;468:105–17.
Article
CAS
Google Scholar
Foo SA, Byrne M, Ricevuto E, Gambi MC. The carbon dioxide vents of ischia, Italy, A natural system to assess impacts of ocean acidification on marine ecosystems: An overview of research and comparisons with other vent systems. In: Oceanography and Marine Biology. CRC Press; 2018. p. 237–310.
Clements JC, Hunt HL. Marine animal behaviour in a high CO2 ocean. Mar Ecol Prog Ser. 2015;29(536):259–79.
Article
CAS
Google Scholar
Roggatz CC, Lorch M, Hardege JD, Benoit DM. Ocean acidification affects marine chemical communication by changing structure and function of peptide signalling molecules. Glob Chang Biol. 2016;22(12):3914–26.
Article
Google Scholar
Nilsson GE, Dixson DL, Domenici P, McCormick MI, Sørensen C, Watson S-A, et al. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nat Clim Chang. 2012;2(3):201–4.
Article
CAS
Google Scholar
PlatyBrowser. A cellular gene expression atlas for Platynereis dumerilii. PlatyBrowser. https://github.com/mobie/mobie-viewer-fiji#mmb-fiji
PlatyConnectome. A whole-body connectome for Platynereis dumerilii with synaptic resolution. Platynereis connectome. https://catmaid.jekelylab.ex.ac.uk
Platynereis dumerilii. http://platynereis.com. Accessed 6 May 2021
Audouin JV, Milne EH. Classification des Annélides et description de celles qui habitent les côtes de la France. Part 3. Ann Sci Nat. 1833;1(29):195–269.
Google Scholar
Kinberg JGH. Annulata nova. Öfversigt af Königlich Vetenskapsakademiens förhandlingar. 1865;22(2):167–79.
Google Scholar