Abitua PB, Gainous TB, Kaczmarczyk AN, Winchell CJ, Hudson C, Kamata K, Nakagawa M, Tsuda M, Kusakabe TG, Levine M. The pre-vertebrate origins of neurogenic placodes. Nature. 2015;524:462.
CAS
PubMed
PubMed Central
Google Scholar
Abitua PB, Wagner E, Navarrete IA, Levine M. Identification of a rudimentary neural crest in a non-vertebrate chordate. Nature. 2012;492:104.
CAS
PubMed
PubMed Central
Google Scholar
Anderson PJ, Lynch TJ, Engelhardt JF. Multipotent myoepithelial progenitor cells are born early during airway submucosal gland development. Am J Respir Cell Mol Biol. 2017;56:716–26.
CAS
PubMed
PubMed Central
Google Scholar
Arendt D, Musser JM, Baker CVH, Bergman A, Cepko C, Erwin DH, Pavlicev M, Schlosser G, Widder S, Laubichler MD, Wagner GP. The origin and evolution of cell types. Nat Rev Genet. 2016;17:744–57.
CAS
PubMed
Google Scholar
Beh J, Shi W, Levine M, Davidson B, Christiaen L. FoxF is essential for FGF-induced migration of heart progenitor cells in the ascidian Ciona intestinalis. Development. 2007;134:3297–305.
CAS
PubMed
Google Scholar
Berkes CA, Tapscott SJ. MyoD and the transcriptional control of myogenesis. Semin Cell Dev Biol. 2005;16:585–95.
CAS
PubMed
Google Scholar
Biben C, Wang CC, Harvey RP. NK-2 class homeobox genes and pharyngeal/oral patterning: Nkx2-3 is required for salivary gland and tooth morphogenesis. Int J Dev Biol. 2002;46:415–22.
CAS
PubMed
Google Scholar
Brunet T, Fischer AH, Steinmetz PR, Lauri A, Bertucci P, Arendt D. The evolutionary origin of bilaterian smooth and striated myocytes. Elife. 2016;5:e19607.
PubMed
PubMed Central
Google Scholar
Burighel P, Cloney R. Microscopic anatomy of invertebrates. New York: Wiley; 1997.
Google Scholar
Carson JA, Fillmore RA, Schwartz RJ, Zimmer WE. The Smooth Muscle γ-actin gene promoter is a molecular target for the mouse bagpipe homologue, mNkx3-1, and serum response factor. J Biol Chem. 2000;275:39061–72.
CAS
PubMed
Google Scholar
Chadwick CC, Saito A, Fleischer S. Isolation and characterization of the inositol trisphosphate receptor from smooth muscle. Proc Natl Acad Sci. 1990;87:2132–6.
CAS
PubMed
Google Scholar
Chen T-W, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature. 2013;499:295–300.
CAS
PubMed
PubMed Central
Google Scholar
Chen W-C, Pauls S, Bacha J, Elgar G, Loose M, Shimeld SM. Dissection of a Ciona regulatory element reveals complexity of cross-species enhancer activity. Develop Biol. 2014;390:261–72.
CAS
PubMed
Google Scholar
Chiba S, Awazu S, Itoh M, Chin-Bow ST, Satoh N, Satou Y, Hastings KE. A genomewide survey of developmentally relevant genes in Ciona intestinalis. IX. Genes for muscle structural proteins. Dev Genes Evol. 2003;213:291–302.
CAS
PubMed
Google Scholar
Christiaen, L., Wagner, E., Shi, W., Levine, M., 2009a. Electroporation of transgenic DNAs in the sea squirt Ciona. Cold Spring Harbor Protocols 2009, pdb. prot5345.
Christiaen L, Wagner E, Shi W, Levine M. Isolation of sea squirt (Ciona) gametes, fertilization, dechorionation, and development. Cold Spring: Cold Spring Harbor Protocols; 2009. p. 2009.
Google Scholar
Cloney R. Larval adhesive organs and metamorphosis in ascidians. II. The mechanism of eversion of the papillae of Distaplia occidentalis. Cell Tissue Res. 1979;200:453–73.
CAS
PubMed
Google Scholar
Cloney RA. Ascidian larvae and the events of metamorphosis. Am Zool. 1982;22:817–26.
Google Scholar
Dardaillon J, Dauga D, Simion P, Faure E, Onuma TA, DeBiasse MB, Louis A, Nitta KR, Naville M, Besnardeau L. ANISEED 2019: 4D exploration of genetic data for an extended range of tunicates. Nucleic Acids Res. 2020;48:D668–75.
PubMed
Google Scholar
Davidson B, Levine M. Evolutionary origins of the vertebrate heart: specification of the cardiac lineage in Ciona intestinalis. Proc Natl Acad Sci. 2003;100:11469–73.
CAS
PubMed
Google Scholar
Davis-Silberman N, Ashery-Padan R. Iris development in vertebrates; genetic and molecular considerations. Brain Res. 2008;1192:17–28.
CAS
PubMed
Google Scholar
Davis FM, Janoshazi A, Janardhan KS, Steinckwich N, D’Agostin DM, Petranka JG, Desai PN, Roberts-Thomson SJ, Bird GS, Tucker DK, Fenton SE, Feske S, Monteith GR, Putney JW Jr. Essential role of Orai1 store-operated calcium channels in lactation. Proc Natl Acad Sci USA. 2015;112:5827–32.
CAS
PubMed
Google Scholar
De Santo RS, Dudley PL. Ultramicroscopic filaments in the ascidian Botryllus schlosseri (pallas) and their possible role in ampullar contractions. J Ultrastruct Res. 1969;28:259–74.
PubMed
Google Scholar
Delsuc F, Brinkmann H, Chourrout D, Philippe H. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature. 2006;439:2.
Google Scholar
Deugnier MA, Moiseyeva EP, Thiery JP, Glukhova M. Myoepithelial cell differentiation in the developing mammary gland: progressive acquisition of smooth muscle phenotype. Dev Dyn. 1995;204:107–17.
CAS
PubMed
Google Scholar
Dolcemascolo G, Pennati R, De Bernardi F, Damiani F, Gianguzza M. Ultrastructural comparative analysis on the adhesive papillae of the swimming larvae of three ascidian species. Invert Surv J. 2009;6:S77–86.
Google Scholar
Dufour HD, Chettouh Z, Deyts C, de Rosa R, Goridis C, Joly J-S, Brunet J-F. Precraniate origin of cranial motoneurons. Proc Natl Acad Sci. 2006;103:8727–32.
CAS
PubMed
Google Scholar
Etchevers HC, Vincent C, Le Douarin NM, Couly GF. The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development. 2001;128:1059–68.
CAS
PubMed
Google Scholar
Ferrari PA, Koch WE. Development of the iris in the chicken embryo: I. A study of growth and histodifferentiation utilizing immunocytochemistry for muscle differentiation. Development. 1984;81:153–67.
CAS
Google Scholar
Fisher SA. Vascular smooth muscle phenotypic diversity and function. Physiol Genomics. 2010;42A:169–87.
CAS
PubMed
PubMed Central
Google Scholar
Flores AR, Faulkes Z. Texture preferences of ascidian tadpole larvae during settlement. Marine Freshw Behavio Physiol. 2008;41:155–9.
Google Scholar
Foschini MP, Scarpellini F, Gown AM, Eusebi V. Differential expression of myoepithelial markers in salivary, sweat and mammary glands. Int J Surg Pathol. 2000;8:29–37.
PubMed
Google Scholar
Fritzenwanker JH, Gerhart J, Freeman RM, Lowe CJ. The Fox/Forkhead transcription factor family of the hemichordate Saccoglossus kowalevskii. EvoDevo. 2014;5:17.
PubMed
PubMed Central
Google Scholar
Gans C, Northcutt RG. Neural crest and the origin of vertebrates: a new head. Science. 1983;220:268–73.
CAS
PubMed
Google Scholar
Gianguzza M, Dolcemascolo G, Fascio UGO, De Bernardi F. Adhesive papillae of Ascidia malaca swimming larvae: investigations on their sensory function. Invert Reprod Develop. 1999;35:239–50.
Google Scholar
Glenn Northcutt R. The new head hypothesis revisited. J Exp Zool. 2005;304:274–97.
CAS
Google Scholar
Gong MC, Cohen P, Kitazawa T, Ikebe M, Masuo M, Somlyo AP, Somlyo AV. Myosin light chain phosphatase activities and the effects of phosphatase inhibitors in tonic and phasic smooth muscle. J Biol Chem. 1992;267:14662–8.
CAS
PubMed
Google Scholar
Goodson HV, Spudich JA. Molecular evolution of the myosin family: relationships derived from comparisons of amino acid sequences. Proc Natl Acad Sci. 1993;90:659–63.
CAS
PubMed
Google Scholar
Groppelli S, Pennati R, Scarì G, Sotgia C, De Bernardi F. Observations on the settlement of Phallusia mammillata larvae: effects of different lithological substrata. Italian J Zool. 2003;70:321–6.
Google Scholar
He WQ, Qiao YN, Peng YJ, Zha JM, Zhang CH, Chen C, Chen CP, Wang P, Yang X, Li CJ, Kamm KE, Stull JT, Zhu MS. Altered contractile phenotypes of intestinal smooth muscle in mice deficient in myosin phosphatase target subunit 1. Gastroenterology. 2013;144:1456–65.
CAS
PubMed
PubMed Central
Google Scholar
Holzapfel G, Wehland J, Weber K. Calcium control of actin-myosin based contraction in triton models of mouse 3T3 fibroblasts is mediated by the myosin light chain kinase (MLCK)-calmodulin complex. Exp Cell Res. 1983;148:117–26.
CAS
PubMed
Google Scholar
Horie R, Hazbun A, Chen K, Cao C, Levine M, Horie T. Shared evolutionary origin of vertebrate neural crest and cranial placodes. Nature. 2018;560:228.
CAS
PubMed
PubMed Central
Google Scholar
Hozumi A, Matsunobu S, Mita K, Treen N, Sugihara T, Horie T, Sakuma T, Yamamoto T, Shiraishi A, Hamada M, Satoh N, Sakurai K, Satake H, Sasakura Y. GABA-Induced GnRH release triggers chordate metamorphosis. Curr Biol. 2020;3:1555.
Google Scholar
Huxley AF, Niedergerke R. Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature. 1954;173:971–3.
CAS
PubMed
Google Scholar
Huxley H, Hanson J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. 1954;173:973–6.
CAS
PubMed
Google Scholar
Ikuta T, Saiga H. Dynamic change in the expression of developmental genes in the ascidian central nervous system: revisit to the tripartite model and the origin of the midbrain-hindbrain boundary region. Dev Biol. 2007;312:2.
Google Scholar
Imai JH, Meinertzhagen IA. Neurons of the ascidian larval nervous system in Ciona intestinalis: II. Peripheral nervous system. J Comparat Neurol. 2007;501:335–52.
CAS
Google Scholar
Imai KS, Daido Y, Kusakabe TG, Satou Y. Cis-acting transcriptional repression establishes a sharp boundary in chordate embryos. Science. 2012;337:964.
CAS
PubMed
Google Scholar
Imai KS, Hino K, Yagi K, Satoh N, Satou Y. Gene expression profiles of transcription factors and signaling molecules in the ascidian embryo: towards a comprehensive understanding of gene networks. Development. 2004;131:4047–58.
CAS
PubMed
Google Scholar
Inman JL, Robertson C, Mott JD, Bissell MJ. Mammary gland development: cell fate specification, stem cells and the microenvironment. Development. 2015;142:1028–42.
CAS
PubMed
Google Scholar
Inoue J, Satoh N. Deuterostome genomics: lineage-specific protein expansions that enabled chordate muscle evolution. Mol Biol Evol. 2018;35:914–24.
CAS
PubMed
PubMed Central
Google Scholar
Ismat A, Schaub C, Reim I, Kirchner K, Schultheis D, Frasch M. HLH54F is required for the specification and migration of longitudinal gut muscle founders from the caudal mesoderm of Drosophila. Development. 2010;137:3107.
CAS
PubMed
PubMed Central
Google Scholar
Jia G, Preussner J, Chen X, Guenther S, Yuan X, Yekelchyk M, Kuenne C, Looso M, Zhou Y, Teichmann S, Braun T. Single cell RNA-seq and ATAC-seq analysis of cardiac progenitor cell transition states and lineage settlement. Nat Commun. 2018;9:4877.
PubMed
PubMed Central
Google Scholar
Kamm KE, Stull JT. Dedicated myosin light chain kinases with diverse cellular functions. J Biol Chem. 2001;276:4527–30.
CAS
PubMed
Google Scholar
Karaiskou A, Swalla BJ, Sasakura Y, Chambon JP. Metamorphosis in solitary ascidians. Genesis. 2015;53:34–47.
PubMed
Google Scholar
Kivelä T, Fuchs U, Tarkkanen A. Cytoskeleton in neuroectodermally derived epithelial and muscle cells of the human iris and ciliary body. J Histochem Cytochem. 1992;40:1517–26.
PubMed
Google Scholar
Lambers E, Arnone B, Fatima A, Qin G, Wasserstrom JA, Kume T. Foxc1 Regulates Early Cardiomyogenesis and Functional Properties of Embryonic Stem Cell Derived Cardiomyocytes. STEM CELLS. 2016;34:1487–500.
CAS
PubMed
Google Scholar
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.
CAS
PubMed
PubMed Central
Google Scholar
Li S, Chang S, Qi X, Richardson JA, Olson EN. Requirement of a myocardin-related transcription factor for development of mammary myoepithelial cells. Mol Cell Biol. 2006;26:5797–808.
CAS
PubMed
PubMed Central
Google Scholar
Li S, Wang D-Z, Wang Z, Richardson JA, Olson EN. The serum response factor coactivator myocardin is required for vascular smooth muscle development. Proc Natl Acad Sci. 2003;100:9366.
CAS
PubMed
Google Scholar
Liu B, Satou Y. Foxg specifies sensory neurons in the anterior neural plate border of the ascidian embryo. Nat Commun. 2019;10:4911.
PubMed
PubMed Central
Google Scholar
Lowe RP, Carroll N. Myoepithelium of the Human Iris: a Stereoscopic Scanning Electron Microscopic Study. Aust J Opthalmol. 1975;3:125–34.
Google Scholar
Makarenkova HP, Dartt DA. Myoepithelial cells: their origin and function in lacrimal gland morphogenesis, homeostasis, and repair. Curr Mol Biol Rep. 2015;1:115–23.
PubMed
PubMed Central
Google Scholar
Mango SE. The C. elegans pharynx: a model for organogenesis, WormBook: The Online Review of C. elegans Biology. WormBook. 2007.
Martin BS, Ruiz-Gómez M, Landgraf M, Bate M. A distinct set of founders and fusion-competent myoblasts make visceral muscles in the Drosophila embryo. Development. 2001;128:3331.
CAS
PubMed
Google Scholar
Mazet F, Amemiya CT, Shimeld SM. An ancient Fox gene cluster in bilaterian animals. Curr Biol. 2006;16:R314–6.
CAS
PubMed
Google Scholar
Mino T, Yuasa U, Naka M, Tanaka T. Phosphorylation of calponin mediated by protein kinase C in association with contraction in porcine coronary artery. Biochem Biophys Res Commun. 1995;208:397–404.
CAS
PubMed
Google Scholar
Moumen M, Chiche A, Cagnet S, Petit V, Raymond K, Faraldo MM, Deugnier M-A, Glukhova MA. The mammary myoepithelial cell. Int J Dev Biol. 2011;55:763–71.
PubMed
Google Scholar
Nakano KE, Nakamura H. Origin of the iridial striated muscle in birds. J Embryol Exp Morphol. 1985;88:1.
CAS
PubMed
Google Scholar
Nakayama-Ishimura A, Chambon J-P, Horie T, Satoh N, Sasakura Y. Delineating metamorphic pathways in the ascidian Ciona intestinalis. Dev Biol. 2009;326:357–67.
CAS
PubMed
Google Scholar
Ogura Y, Sasakura Y. Developmental control of cell-cycle compensation provides a switch for patterned mitosis at the onset of chordate neurulation. Dev Cell. 2016;37:148–61.
CAS
PubMed
Google Scholar
Okkema PG, Fire A. The Caenorhabditis elegans NK-2 class homeoprotein CEH-22 is involved in combinatorial activation of gene expression in pharyngeal muscle. Development. 1994;120:2175–86.
CAS
PubMed
Google Scholar
Oliphant LW, Cloney RA. The ascidian myocardium: sarcoplasmic reticulum and excitation-contraction coupling. Zeitschrift für Zellforschung und mikroskopische Anatomie. 1972;129:395–412.
CAS
PubMed
Google Scholar
Pennati R, Groppelli S, De Bernardi F, Mastrototaro F, Zega G. Immunohistochemical analysis of adhesive papillae of Clavelina lepadiformis (Müller, 1776) and Clavelina phlegraea (Salfi, 1929) (Tunicata, Ascidiacea). Eur J Histochem. 2009;53:2.
Google Scholar
Pennati R, Rothbächer U. Bioadhesion in ascidians: a developmental and functional genomics perspective. Interface focus. 2015;5:20140061.
PubMed
PubMed Central
Google Scholar
Periasamy M, Kalyanasundaram A. SERCA pump isoforms: their role in calcium transport and disease. Muscle Nerve. 2007;35:430–42.
CAS
PubMed
Google Scholar
Pohl J, Winder SJ, Allen BG, Walsh MP, Sellers JR, Gerthoffer WT. Phosphorylation of calponin in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 1997;272:L115–23.
CAS
Google Scholar
Pouget C, Pottin K, Jaffredo T. Sclerotomal origin of vascular smooth muscle cells and pericytes in the embryo. Dev Biol. 2008;315:437–47.
CAS
PubMed
Google Scholar
Razy-Krajka F, Lam K, Wang W, Stolfi A, Joly M, Bonneau R, Christiaen L. Collier/OLF/EBF-dependent transcriptional dynamics control pharyngeal muscle specification from primed cardiopharyngeal progenitors. Dev Cell. 2014;29:263–76.
CAS
PubMed
PubMed Central
Google Scholar
Razy-Krajka F, Stolfi A. Regulation and evolution of muscle development in tunicates. EvoDevo. 2019;10:13.
PubMed
PubMed Central
Google Scholar
Resink TJ, Scott-Burden T, Bühler FR. Endothelin stimulates phospholipase C in cultured vascular smooth muscle cells. Biochem Biophys Res Commun. 1988;157:1360–8.
CAS
PubMed
Google Scholar
Roberts B, Davidson B, MacMaster G, Lockhart V, Ma E, Wallace SS, Swalla BJ. A complement response may activate metamorphosis in the ascidian Boltenia villosa. Dev Genes Evol. 2007;217:449–58.
CAS
PubMed
Google Scholar
Rothbächer U, Bertrand V, Lamy C, Lemaire P. A combinatorial code of maternal GATA, Ets and β-catenin-TCF transcription factors specifies and patterns the early ascidian ectoderm. Development. 2007;134:4023–32.
PubMed
Google Scholar
Ruzicka DL, Schwartz RJ. Sequential activation of alpha-actin genes during avian cardiogenesis: vascular smooth muscle alpha-actin gene transcripts mark the onset of cardiomyocyte differentiation. J Cell Biol. 1988;107:2575–86.
CAS
PubMed
Google Scholar
Ryan K, Lu Z, Meinertzhagen IA. The peripheral nervous system of the ascidian tadpole larva: types of neurons and their synaptic networks. J Comparative Neurol. 2018;526:583–608.
Google Scholar
Saitou N, OOta S. Phylogenetic relationship of muscle tissues deduced from superimposition of gene trees. Mol Biol Evol. 1999;16:856–67.
PubMed
Google Scholar
Sanders KM. Regulation of smooth muscle excitation and contraction. Neurogastroenterol Motil. 2008;20:39–53.
CAS
PubMed
Google Scholar
Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 2015;33:495.
CAS
PubMed
PubMed Central
Google Scholar
Satoh N. Chordate origins and evolution: the molecular evolutionary road to vertebrates. New York: Academic Press; 2016.
Google Scholar
Scimone ML, Wurtzel O, Malecek K, Fincher CT, Oderberg IM, Kravarik KM, Reddien PW. foxF-1 controls specification of non-body wall muscle and phagocytic cells in planarians. Curr Biol. 2018;28:3787–801.
CAS
PubMed
PubMed Central
Google Scholar
Sharma S, Wang W, Stolfi A. Single-cell transcriptome profiling of the Ciona larval brain. Develop Biol. 2019;448:226–36.
CAS
PubMed
Google Scholar
Shimeld SM, Purkiss AG, Dirks RP, Bateman OA, Slingsby C, Lubsen NH. Urochordate βγ-crystallin and the evolutionary origin of the vertebrate eye lens. Curr Biol. 2005;15:1684–9.
CAS
PubMed
Google Scholar
Song E-AC, Min S, Oyelakin A, Smalley K, Bard JE, Liao L, Xu J, Romano R-A. Genetic and scRNA-seq analysis reveals distinct cell populations that contribute to salivary gland development and maintenance. Sci Rep. 2018;8:14043.
PubMed
PubMed Central
Google Scholar
Sotgia C, Fascio U, Melone G, De Bernardi F. Adhesive Papillae of Phallusia mamillata Larvae: morphology and Innervation. Zoolog Sci. 1998;15:363–70.
CAS
PubMed
Google Scholar
Squire JM, Al-khayat HA, Knupp C, Luther PK. Molecular architecture in muscle contractile assemblies. Adv Protein Chem. 2005;71:17–87.
CAS
PubMed
Google Scholar
Steinmetz PR, Kraus JE, Larroux C, Hammel JU, Amon-Hassenzahl A, Houliston E, Wörheide G, Nickel M, Degnan BM, Technau U. Independent evolution of striated muscles in cnidarians and bilaterians. Nature. 2012;487:231–4.
CAS
PubMed
PubMed Central
Google Scholar
Stolfi A, Brown FD. Tunicata, evolutionary developmental biology of invertebrates. New York: Springer; 2015. p. 135–204.
Google Scholar
Stolfi A, Gainous TB, Young JJ, Mori A, Levine M, Christiaen L. Early chordate origins of the vertebrate second heart field. Science. 2010;329:565–8.
CAS
PubMed
PubMed Central
Google Scholar
Stolfi A, Levine M. Neuronal subtype specification in the spinal cord of a protovertebrate. Development. 2011;138:995–1004.
CAS
PubMed
Google Scholar
Stolfi A, Ryan K, Meinertzhagen IA, Christiaen L. Migratory neuronal progenitors arise from the neural plate borders in tunicates. Nature. 2015;527:371.
CAS
PubMed
PubMed Central
Google Scholar
Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM III, Hao Y, Stoeckius M, Smibert P, Satija R. Comprehensive integration of single-cell data. Cell. 2019;177(1888–1902):e1821.
Google Scholar
Svane I, Young CM. The ecology and behaviour of ascidian larvae. Oceanogr Mar Biol. 1989;27:45–90.
Google Scholar
Takahashi K, Hiwada K, Kokubu T. Vascular smooth muscle calponin. A novel troponin T-like protein. Hypertension. 1988;11:620–6.
CAS
PubMed
Google Scholar
Tamura T, Smelser GK. Development of the Sphincter and Dilator Muscles of the Iris. Arch Ophthalmol. 1973;89:332–9.
CAS
PubMed
Google Scholar
Tanaka H, Hijikata T, Murakami T, Fujimaki N, Ishikawa H. Localization of plectin and other related proteins along the sarcolemma in smooth muscle cells of rat colon. Cell Struct Funct. 2001;26:61–70.
CAS
PubMed
Google Scholar
Taylor MV. Comparison of muscle development in Drosophila and vertebrates. Muscle development in Drosophila. New York: Springer; 2006. p. 169–203.
Google Scholar
Torrence SA, Cloney RA. Ascidian larval nervous system: primary sensory neurons in adhesive papillae. Zoomorphology. 1983;102:111–23.
Google Scholar
Tsukamoto S, Hirota H, Kato H, Fusetani N. Urochordamines A and B: larval settlement/metamorphosis-promoting, pteridine-containing physostigmine alkaloids from the tunicate Ciona savignyi. Tetrahedron Lett. 1993;34:4819–22.
CAS
Google Scholar
Tümer Z, Bach-Holm D. Axenfeld-Rieger syndrome and spectrum of PITX2 and FOXC1 mutations. Eur J Hum Genet. 2009;17:1527–39.
PubMed
PubMed Central
Google Scholar
Turon X. Morphology of the adhesive papillae of sorne ascidian larvae. Cah Biol Mar. 1991;32: 295–309.
Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA-K, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist P-H, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Pontén F. Tissue-based map of the human proteome. Science. 2015;347:1260419.
PubMed
Google Scholar
Wagner E, Levine M. FGF signaling establishes the anterior border of the Ciona neural tube. Development. 2012;139:2351–9.
CAS
PubMed
PubMed Central
Google Scholar
Wagner E, Stolfi A, Choi YG, Levine M. Islet is a key determinant of ascidian palp morphogenesis. Development. 2014;141:3084–92.
CAS
PubMed
PubMed Central
Google Scholar
Webb BLJ, Hirst SJ, Giembycz MA. Protein kinase C isoenzymes: a review of their structure, regulation and role in regulating airways smooth muscle tone and mitogenesis. Br J Pharmacol. 2000;130:1433–52.
CAS
PubMed
PubMed Central
Google Scholar
Whitesell TR, Chrystal PW, Ryu J-R, Munsie N, Grosse A, French CR, Workentine ML, Li R, Zhu LJ, Waskiewicz A. foxc1 is required for embryonic head vascular smooth muscle differentiation in zebrafish. Develop Biol. 2019;453:34–47.
CAS
PubMed
Google Scholar
Wright DB, Tripathi S, Sikarwar A, Santosh KT, Perez-Zoghbi J, Ojo OO, Irechukwu N, Ward JPT, Schaafsma D. Regulation of GPCR-mediated smooth muscle contraction: implications for asthma and pulmonary hypertension. Pulm Pharmacol Ther. 2013;26:121–31.
CAS
PubMed
Google Scholar
Wystub K, Besser J, Bachmann A, Boettger T, Braun T. miR-1/133a clusters cooperatively specify the cardiomyogenic lineage by adjustment of myocardin levels during embryonic heart development. PLoS Genetics. 2013;9:23.
Google Scholar
Yu D, Oda-Ishii I, Kubo A, Satou Y. The regulatory pathway from genes directly activated by maternal factors to muscle structural genes in ascidian embryos. Development. 2019;146:173104.
Google Scholar
Yue Y, Jiang M, He L, Zhang Z, Zhang Q, Gu C, Liu M, Li N, Zhao Q. The transcription factor Foxc1a in zebrafish directly regulates expression of nkx2.5, encoding a transcriptional regulator of cardiac progenitor cells. J Biol Chem. 2018;293:638–50.
CAS
PubMed
Google Scholar
Zeng F, Wunderer J, Salvenmoser W, Ederth T, Rothbächer U. Identifying adhesive components in a model tunicate. Philosophical Transactions of the Royal Society B. 2019;374:20190197.
CAS
Google Scholar
Zeng F, Wunderer J, Salvenmoser W, Hess MW, Ladurner P, Rothbächer U. Papillae revisited and the nature of the adhesive secreting collocytes. Dev Biol. 2019;8:23.
Google Scholar
Zhang Y, Hermanson ME, Eddinger TJ. Tonic and phasic smooth muscle contraction is not regulated by the PKCα - CPI-17 Pathway in Swine Stomach Antrum and Fundus. PLoS ONE. 2013;8:e74608.
CAS
PubMed
PubMed Central
Google Scholar